{"title":"降雨和蒸发干湿循环对边坡稳定性的影响","authors":"Ya Zhao","doi":"10.1155/2022/5775424","DOIUrl":null,"url":null,"abstract":"The decay of soil strength and the change of soil infiltration characteristics caused by the dry and wet cycle effect generated by the rainfall-evaporation process are important factors that induce slope instability. How to consider the effect of soil strength decay and water-soil characteristic curve hysteresis effect on transient stability change of slope is the key to solve this problem. In this paper, transient stability analysis of slopes considering soil strength decay and water-soil characteristic curve hysteresis is carried out based on Geo-Studio. The results of the study showed that the change of transient safety factor of the slope caused by rainfall-evaporation dry and wet cycle process has an overall decreasing trend and the safety factor decreased by 43% compared to the initial state. The seepage characteristics of the rainfall-evaporation dry-wet cycle have certain regularity. The location of slope measurement points has a greater influence on the magnitude of the pore pressure change: foot of slope > middle of slope > top of slope. Also, there is a significant response hysteresis in the change of pore pressure with increasing depth at the same location. The rainfall intensity has a certain influence on the change of slope safety factor, but its influence is not obvious when the rainfall intensity exceeds a certain amount.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Influence of Rainfall and Evaporization Wetting-Drying Cycles on the Slope Stability\",\"authors\":\"Ya Zhao\",\"doi\":\"10.1155/2022/5775424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The decay of soil strength and the change of soil infiltration characteristics caused by the dry and wet cycle effect generated by the rainfall-evaporation process are important factors that induce slope instability. How to consider the effect of soil strength decay and water-soil characteristic curve hysteresis effect on transient stability change of slope is the key to solve this problem. In this paper, transient stability analysis of slopes considering soil strength decay and water-soil characteristic curve hysteresis is carried out based on Geo-Studio. The results of the study showed that the change of transient safety factor of the slope caused by rainfall-evaporation dry and wet cycle process has an overall decreasing trend and the safety factor decreased by 43% compared to the initial state. The seepage characteristics of the rainfall-evaporation dry-wet cycle have certain regularity. The location of slope measurement points has a greater influence on the magnitude of the pore pressure change: foot of slope > middle of slope > top of slope. Also, there is a significant response hysteresis in the change of pore pressure with increasing depth at the same location. The rainfall intensity has a certain influence on the change of slope safety factor, but its influence is not obvious when the rainfall intensity exceeds a certain amount.\",\"PeriodicalId\":7353,\"journal\":{\"name\":\"Advances in Meteorology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5775424\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/5775424","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The Influence of Rainfall and Evaporization Wetting-Drying Cycles on the Slope Stability
The decay of soil strength and the change of soil infiltration characteristics caused by the dry and wet cycle effect generated by the rainfall-evaporation process are important factors that induce slope instability. How to consider the effect of soil strength decay and water-soil characteristic curve hysteresis effect on transient stability change of slope is the key to solve this problem. In this paper, transient stability analysis of slopes considering soil strength decay and water-soil characteristic curve hysteresis is carried out based on Geo-Studio. The results of the study showed that the change of transient safety factor of the slope caused by rainfall-evaporation dry and wet cycle process has an overall decreasing trend and the safety factor decreased by 43% compared to the initial state. The seepage characteristics of the rainfall-evaporation dry-wet cycle have certain regularity. The location of slope measurement points has a greater influence on the magnitude of the pore pressure change: foot of slope > middle of slope > top of slope. Also, there is a significant response hysteresis in the change of pore pressure with increasing depth at the same location. The rainfall intensity has a certain influence on the change of slope safety factor, but its influence is not obvious when the rainfall intensity exceeds a certain amount.
期刊介绍:
Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.