Information processing in medical imaging : proceedings of the ... conference最新文献

筛选
英文 中文
Don't PANIC: Prototypical Additive Neural Network for Interpretable Classification of Alzheimer's Disease 不要惊慌:用于阿尔茨海默病可解释分类的原型加法神经网络
Information processing in medical imaging : proceedings of the ... conference Pub Date : 2023-03-13 DOI: 10.48550/arXiv.2303.07125
Thomas Wolf, Sebastian Pölsterl, C. Wachinger
{"title":"Don't PANIC: Prototypical Additive Neural Network for Interpretable Classification of Alzheimer's Disease","authors":"Thomas Wolf, Sebastian Pölsterl, C. Wachinger","doi":"10.48550/arXiv.2303.07125","DOIUrl":"https://doi.org/10.48550/arXiv.2303.07125","url":null,"abstract":"Alzheimer's disease (AD) has a complex and multifactorial etiology, which requires integrating information about neuroanatomy, genetics, and cerebrospinal fluid biomarkers for accurate diagnosis. Hence, recent deep learning approaches combined image and tabular information to improve diagnostic performance. However, the black-box nature of such neural networks is still a barrier for clinical applications, in which understanding the decision of a heterogeneous model is integral. We propose PANIC, a prototypical additive neural network for interpretable AD classification that integrates 3D image and tabular data. It is interpretable by design and, thus, avoids the need for post-hoc explanations that try to approximate the decision of a network. Our results demonstrate that PANIC achieves state-of-the-art performance in AD classification, while directly providing local and global explanations. Finally, we show that PANIC extracts biologically meaningful signatures of AD, and satisfies a set of desirable desiderata for trustworthy machine learning. Our implementation is available at https://github.com/ai-med/PANIC .","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"28 1","pages":"82-94"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76432496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Token Sparsification for Faster Medical Image Segmentation 用于快速医学图像分割的标记稀疏化
Information processing in medical imaging : proceedings of the ... conference Pub Date : 2023-03-11 DOI: 10.48550/arXiv.2303.06522
Lei Zhou, Huidong Liu, Joseph Bae, Junjun He, D. Samaras, P. Prasanna
{"title":"Token Sparsification for Faster Medical Image Segmentation","authors":"Lei Zhou, Huidong Liu, Joseph Bae, Junjun He, D. Samaras, P. Prasanna","doi":"10.48550/arXiv.2303.06522","DOIUrl":"https://doi.org/10.48550/arXiv.2303.06522","url":null,"abstract":"Can we use sparse tokens for dense prediction, e.g., segmentation? Although token sparsification has been applied to Vision Transformers (ViT) to accelerate classification, it is still unknown how to perform segmentation from sparse tokens. To this end, we reformulate segmentation as a sparse encoding ->token completion ->dense decoding (SCD) pipeline. We first empirically show that naively applying existing approaches from classification token pruning and masked image modeling (MIM) leads to failure and inefficient training caused by inappropriate sampling algorithms and the low quality of the restored dense features. In this paper, we propose Soft-topK Token Pruning (STP) and Multi-layer Token Assembly (MTA) to address these problems. In sparse encoding, STP predicts token importance scores with a lightweight sub-network and samples the topK tokens. The intractable topK gradients are approximated through a continuous perturbed score distribution. In token completion, MTA restores a full token sequence by assembling both sparse output tokens and pruned multi-layer intermediate ones. The last dense decoding stage is compatible with existing segmentation decoders, e.g., UNETR. Experiments show SCD pipelines equipped with STP and MTA are much faster than baselines without token pruning in both training (up to 120% higher throughput and inference up to 60.6% higher throughput) while maintaining segmentation quality.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"19 1","pages":"743-754"},"PeriodicalIF":0.0,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84304658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolving quantitative MRI model degeneracy with machine learning via training data distribution design 通过训练数据分布设计,用机器学习解决定量MRI模型退化问题
Information processing in medical imaging : proceedings of the ... conference Pub Date : 2023-03-09 DOI: 10.48550/arXiv.2303.05464
Michele Guerreri, Sean C. Epstein, H. Azadbakht, Hui Zhang
{"title":"Resolving quantitative MRI model degeneracy with machine learning via training data distribution design","authors":"Michele Guerreri, Sean C. Epstein, H. Azadbakht, Hui Zhang","doi":"10.48550/arXiv.2303.05464","DOIUrl":"https://doi.org/10.48550/arXiv.2303.05464","url":null,"abstract":"Quantitative MRI (qMRI) aims to map tissue properties non-invasively via models that relate these unknown quantities to measured MRI signals. Estimating these unknowns, which has traditionally required model fitting - an often iterative procedure, can now be done with one-shot machine learning (ML) approaches. Such parameter estimation may be complicated by intrinsic qMRI signal model degeneracy: different combinations of tissue properties produce the same signal. Despite their many advantages, it remains unclear whether ML approaches can resolve this issue. Growing empirical evidence appears to suggest ML approaches remain susceptible to model degeneracy. Here we demonstrate under the right circumstances ML can address this issue. Inspired by recent works on the impact of training data distributions on ML-based parameter estimation, we propose to resolve model degeneracy by designing training data distributions. We put forward a classification of model degeneracies and identify one particular kind of degeneracies amenable to the proposed attack. The strategy is demonstrated successfully using the Revised NODDI model with standard multi-shell diffusion MRI data as an exemplar. Our results illustrate the importance of training set design which has the potential to allow accurate estimation of tissue properties with ML.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"3 1","pages":"3-14"},"PeriodicalIF":0.0,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86424637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MetaMorph: Learning Metamorphic Image Transformation With Appearance Changes 变形:学习变形图像的外观变化
Information processing in medical imaging : proceedings of the ... conference Pub Date : 2023-03-08 DOI: 10.48550/arXiv.2303.04849
Jian Wang, Jiarui Xing, J.T. Druzgal, W. Wells, Miaomiao Zhang
{"title":"MetaMorph: Learning Metamorphic Image Transformation With Appearance Changes","authors":"Jian Wang, Jiarui Xing, J.T. Druzgal, W. Wells, Miaomiao Zhang","doi":"10.48550/arXiv.2303.04849","DOIUrl":"https://doi.org/10.48550/arXiv.2303.04849","url":null,"abstract":"This paper presents a novel predictive model, MetaMorph, for metamorphic registration of images with appearance changes (i.e., caused by brain tumors). In contrast to previous learning-based registration methods that have little or no control over appearance-changes, our model introduces a new regularization that can effectively suppress the negative effects of appearance changing areas. In particular, we develop a piecewise regularization on the tangent space of diffeomorphic transformations (also known as initial velocity fields) via learned segmentation maps of abnormal regions. The geometric transformation and appearance changes are treated as joint tasks that are mutually beneficial. Our model MetaMorph is more robust and accurate when searching for an optimal registration solution under the guidance of segmentation, which in turn improves the segmentation performance by providing appropriately augmented training labels. We validate MetaMorph on real 3D human brain tumor magnetic resonance imaging (MRI) scans. Experimental results show that our model outperforms the state-of-the-art learning-based registration models. The proposed MetaMorph has great potential in various image-guided clinical interventions, e.g., real-time image-guided navigation systems for tumor removal surgery.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"67 1","pages":"576-587"},"PeriodicalIF":0.0,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83589864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep Learning Framework Incorporating Laplace's Equation 基于拉普拉斯方程的深度学习框架改进皮层灰质深沟分割
Information processing in medical imaging : proceedings of the ... conference Pub Date : 2023-03-01 DOI: 10.48550/arXiv.2303.00795
S. Ravikumar, Ranjit Itttyerah, Sydney A. Lim, L. Xie, Sandhitsu R. Das, Pulkit Khandelwal, L. Wisse, M. Bedard, John L. Robinson, Terry K. Schuck, M. Grossman, J. Trojanowski, Eddie B. Lee, M. Tisdall, K. Prabhakaran, J. Detre, D. Irwin, Winifred Trotman, G. Mizsei, Emilio Artacho-P'erula, Maria Mercedes Iniguez de Onzono Martin, Maria del Mar Arroyo Jim'enez, M. Muñoz, Francisco Javier Molina Romero, M. Rabal, Sandra Cebada-S'anchez, J. Gonz'alez, C. Rosa-Prieto, Marta Córcoles Parada, D. Wolk, R. Insausti, Paul Yushkevich
{"title":"Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep Learning Framework Incorporating Laplace's Equation","authors":"S. Ravikumar, Ranjit Itttyerah, Sydney A. Lim, L. Xie, Sandhitsu R. Das, Pulkit Khandelwal, L. Wisse, M. Bedard, John L. Robinson, Terry K. Schuck, M. Grossman, J. Trojanowski, Eddie B. Lee, M. Tisdall, K. Prabhakaran, J. Detre, D. Irwin, Winifred Trotman, G. Mizsei, Emilio Artacho-P'erula, Maria Mercedes Iniguez de Onzono Martin, Maria del Mar Arroyo Jim'enez, M. Muñoz, Francisco Javier Molina Romero, M. Rabal, Sandra Cebada-S'anchez, J. Gonz'alez, C. Rosa-Prieto, Marta Córcoles Parada, D. Wolk, R. Insausti, Paul Yushkevich","doi":"10.48550/arXiv.2303.00795","DOIUrl":"https://doi.org/10.48550/arXiv.2303.00795","url":null,"abstract":"When developing tools for automated cortical segmentation, the ability to produce topologically correct segmentations is important in order to compute geometrically valid morphometry measures. In practice, accurate cortical segmentation is challenged by image artifacts and the highly convoluted anatomy of the cortex itself. To address this, we propose a novel deep learning-based cortical segmentation method in which prior knowledge about the geometry of the cortex is incorporated into the network during the training process. We design a loss function which uses the theory of Laplace's equation applied to the cortex to locally penalize unresolved boundaries between tightly folded sulci. Using an ex vivo MRI dataset of human medial temporal lobe specimens, we demonstrate that our approach outperforms baseline segmentation networks, both quantitatively and qualitatively.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"146 1","pages":"692-704"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77647104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
X-TRA: Improving Chest X-ray Tasks with Cross-Modal Retrieval Augmentation X-TRA:改进胸部x线任务与跨模态检索增强
Information processing in medical imaging : proceedings of the ... conference Pub Date : 2023-02-22 DOI: 10.48550/arXiv.2302.11352
Tom van Sonsbeek, M. Worring
{"title":"X-TRA: Improving Chest X-ray Tasks with Cross-Modal Retrieval Augmentation","authors":"Tom van Sonsbeek, M. Worring","doi":"10.48550/arXiv.2302.11352","DOIUrl":"https://doi.org/10.48550/arXiv.2302.11352","url":null,"abstract":"An important component of human analysis of medical images and their context is the ability to relate newly seen things to related instances in our memory. In this paper we mimic this ability by using multi-modal retrieval augmentation and apply it to several tasks in chest X-ray analysis. By retrieving similar images and/or radiology reports we expand and regularize the case at hand with additional knowledge, while maintaining factual knowledge consistency. The method consists of two components. First, vision and language modalities are aligned using a pre-trained CLIP model. To enforce that the retrieval focus will be on detailed disease-related content instead of global visual appearance it is fine-tuned using disease class information. Subsequently, we construct a non-parametric retrieval index, which reaches state-of-the-art retrieval levels. We use this index in our downstream tasks to augment image representations through multi-head attention for disease classification and report retrieval. We show that retrieval augmentation gives considerable improvements on these tasks. Our downstream report retrieval even shows to be competitive with dedicated report generation methods, paving the path for this method in medical imaging.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"21 1","pages":"471-482"},"PeriodicalIF":0.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84151625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Non-rigid Medical Image Registration using Physics-informed Neural Networks 使用物理信息神经网络的非刚性医学图像配准
Information processing in medical imaging : proceedings of the ... conference Pub Date : 2023-02-20 DOI: 10.48550/arXiv.2302.10343
Z. Min, Zachary Michael Cieman Baum, Shaheer U. Saeed, M. Emberton, D. Barratt, Z. Taylor, Yipeng Hu
{"title":"Non-rigid Medical Image Registration using Physics-informed Neural Networks","authors":"Z. Min, Zachary Michael Cieman Baum, Shaheer U. Saeed, M. Emberton, D. Barratt, Z. Taylor, Yipeng Hu","doi":"10.48550/arXiv.2302.10343","DOIUrl":"https://doi.org/10.48550/arXiv.2302.10343","url":null,"abstract":"Biomechanical modelling of soft tissue provides a non-data-driven method for constraining medical image registration, such that the estimated spatial transformation is considered biophysically plausible. This has not only been adopted in real-world clinical applications, such as the MR-to-ultrasound registration for prostate intervention of interest in this work, but also provides an explainable means of understanding the organ motion and spatial correspondence establishment. This work instantiates the recently-proposed physics-informed neural networks (PINNs) to a 3D linear elastic model for modelling prostate motion commonly encountered during transrectal ultrasound guided procedures. To overcome a widely-recognised challenge in generalising PINNs to different subjects, we propose to use PointNet as the nodal-permutation-invariant feature extractor, together with a registration algorithm that aligns point sets and simultaneously takes into account the PINN-imposed biomechanics. The proposed method has been both developed and validated in both patient-specific and multi-patient manner.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"23 1","pages":"601-613"},"PeriodicalIF":0.0,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87288866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Heterogeneous Graph Convolutional Neural Network via Hodge-Laplacian for Brain Functional Data 基于Hodge-Laplacian的脑功能数据异构图卷积神经网络
Information processing in medical imaging : proceedings of the ... conference Pub Date : 2023-02-18 DOI: 10.48550/arXiv.2302.09323
Jinghan Huang, M. Chung, A. Qiu
{"title":"Heterogeneous Graph Convolutional Neural Network via Hodge-Laplacian for Brain Functional Data","authors":"Jinghan Huang, M. Chung, A. Qiu","doi":"10.48550/arXiv.2302.09323","DOIUrl":"https://doi.org/10.48550/arXiv.2302.09323","url":null,"abstract":"This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We introduce a generic formulation of spectral filters on heterogeneous graphs by introducing the $k-th$ Hodge-Laplacian (HL) operator. In particular, we propose Laguerre polynomial approximations of HL spectral filters and prove that their spatial localization on graphs is related to the polynomial order. Furthermore, based on the bijection property of boundary operators on simplex graphs, we introduce a generic topological graph pooling (TGPool) method that can be used at any dimensional simplices. This study designs HL-node, HL-edge, and HL-HGCNN neural networks to learn signal representation at a graph node, edge levels, and both, respectively. Our experiments employ fMRI from the Adolescent Brain Cognitive Development (ABCD; n=7693) to predict general intelligence. Our results demonstrate the advantage of the HL-edge network over the HL-node network when functional brain connectivity is considered as features. The HL-HGCNN outperforms the state-of-the-art graph neural networks (GNNs) approaches, such as GAT, BrainGNN, dGCN, BrainNetCNN, and Hypergraph NN. The functional connectivity features learned from the HL-HGCNN are meaningful in interpreting neural circuits related to general intelligence.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"65 1","pages":"278-290"},"PeriodicalIF":0.0,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80907025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fast-MC-PET: A Novel Deep Learning-aided Motion Correction and Reconstruction Framework for Accelerated PET Fast-MC-PET:一种新的加速PET的深度学习辅助运动校正和重建框架
Information processing in medical imaging : proceedings of the ... conference Pub Date : 2023-02-14 DOI: 10.48550/arXiv.2302.07135
Bo Zhou, Yu-Jung Tsai, Jiazhen Zhang, Xueqi Guo, Huidong Xie, Xiongchao Chen, T. Miao, Yihuan Lu, J. Duncan, Chi Liu
{"title":"Fast-MC-PET: A Novel Deep Learning-aided Motion Correction and Reconstruction Framework for Accelerated PET","authors":"Bo Zhou, Yu-Jung Tsai, Jiazhen Zhang, Xueqi Guo, Huidong Xie, Xiongchao Chen, T. Miao, Yihuan Lu, J. Duncan, Chi Liu","doi":"10.48550/arXiv.2302.07135","DOIUrl":"https://doi.org/10.48550/arXiv.2302.07135","url":null,"abstract":"Patient motion during PET is inevitable. Its long acquisition time not only increases the motion and the associated artifacts but also the patient's discomfort, thus PET acceleration is desirable. However, accelerating PET acquisition will result in reconstructed images with low SNR, and the image quality will still be degraded by motion-induced artifacts. Most of the previous PET motion correction methods are motion type specific that require motion modeling, thus may fail when multiple types of motion present together. Also, those methods are customized for standard long acquisition and could not be directly applied to accelerated PET. To this end, modeling-free universal motion correction reconstruction for accelerated PET is still highly under-explored. In this work, we propose a novel deep learning-aided motion correction and reconstruction framework for accelerated PET, called Fast-MC-PET. Our framework consists of a universal motion correction (UMC) and a short-to-long acquisition reconstruction (SL-Reon) module. The UMC enables modeling-free motion correction by estimating quasi-continuous motion from ultra-short frame reconstructions and using this information for motion-compensated reconstruction. Then, the SL-Recon converts the accelerated UMC image with low counts to a high-quality image with high counts for our final reconstruction output. Our experimental results on human studies show that our Fast-MC-PET can enable 7-fold acceleration and use only 2 minutes acquisition to generate high-quality reconstruction images that outperform/match previous motion correction reconstruction methods using standard 15 minutes long acquisition data.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"89 1","pages":"523-535"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85905357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model 基于高效八叉树深度学习模型的瞬态血流动力学预测
Information processing in medical imaging : proceedings of the ... conference Pub Date : 2023-02-13 DOI: 10.48550/arXiv.2302.06557
Noah Maul, Katharina Zinn, Fabian Wagner, Mareike Thies, M. Rohleder, Laura Pfaff, M. Kowarschik, A. Birkhold, Andreas K. Maier
{"title":"Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model","authors":"Noah Maul, Katharina Zinn, Fabian Wagner, Mareike Thies, M. Rohleder, Laura Pfaff, M. Kowarschik, A. Birkhold, Andreas K. Maier","doi":"10.48550/arXiv.2302.06557","DOIUrl":"https://doi.org/10.48550/arXiv.2302.06557","url":null,"abstract":"Patient-specific hemodynamics assessment could support diagnosis and treatment of neurovascular diseases. Currently, conventional medical imaging modalities are not able to accurately acquire high-resolution hemodynamic information that would be required to assess complex neurovascular pathologies. Therefore, computational fluid dynamics (CFD) simulations can be applied to tomographic reconstructions to obtain clinically relevant information. However, three-dimensional (3D) CFD simulations require enormous computational resources and simulation-related expert knowledge that are usually not available in clinical environments. Recently, deep-learning-based methods have been proposed as CFD surrogates to improve computational efficiency. Nevertheless, the prediction of high-resolution transient CFD simulations for complex vascular geometries poses a challenge to conventional deep learning models. In this work, we present an architecture that is tailored to predict high-resolution (spatial and temporal) velocity fields for complex synthetic vascular geometries. For this, an octree-based spatial discretization is combined with an implicit neural function representation to efficiently handle the prediction of the 3D velocity field for each time step. The presented method is evaluated for the task of cerebral hemodynamics prediction before and during the injection of contrast agent in the internal carotid artery (ICA). Compared to CFD simulations, the velocity field can be estimated with a mean absolute error of 0.024 m/s, whereas the run time reduces from several hours on a high-performance cluster to a few seconds on a consumer graphical processing unit.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"3 1","pages":"183-194"},"PeriodicalIF":0.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90378726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信