Non-rigid Medical Image Registration using Physics-informed Neural Networks

Z. Min, Zachary Michael Cieman Baum, Shaheer U. Saeed, M. Emberton, D. Barratt, Z. Taylor, Yipeng Hu
{"title":"Non-rigid Medical Image Registration using Physics-informed Neural Networks","authors":"Z. Min, Zachary Michael Cieman Baum, Shaheer U. Saeed, M. Emberton, D. Barratt, Z. Taylor, Yipeng Hu","doi":"10.48550/arXiv.2302.10343","DOIUrl":null,"url":null,"abstract":"Biomechanical modelling of soft tissue provides a non-data-driven method for constraining medical image registration, such that the estimated spatial transformation is considered biophysically plausible. This has not only been adopted in real-world clinical applications, such as the MR-to-ultrasound registration for prostate intervention of interest in this work, but also provides an explainable means of understanding the organ motion and spatial correspondence establishment. This work instantiates the recently-proposed physics-informed neural networks (PINNs) to a 3D linear elastic model for modelling prostate motion commonly encountered during transrectal ultrasound guided procedures. To overcome a widely-recognised challenge in generalising PINNs to different subjects, we propose to use PointNet as the nodal-permutation-invariant feature extractor, together with a registration algorithm that aligns point sets and simultaneously takes into account the PINN-imposed biomechanics. The proposed method has been both developed and validated in both patient-specific and multi-patient manner.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"23 1","pages":"601-613"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information processing in medical imaging : proceedings of the ... conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.10343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Biomechanical modelling of soft tissue provides a non-data-driven method for constraining medical image registration, such that the estimated spatial transformation is considered biophysically plausible. This has not only been adopted in real-world clinical applications, such as the MR-to-ultrasound registration for prostate intervention of interest in this work, but also provides an explainable means of understanding the organ motion and spatial correspondence establishment. This work instantiates the recently-proposed physics-informed neural networks (PINNs) to a 3D linear elastic model for modelling prostate motion commonly encountered during transrectal ultrasound guided procedures. To overcome a widely-recognised challenge in generalising PINNs to different subjects, we propose to use PointNet as the nodal-permutation-invariant feature extractor, together with a registration algorithm that aligns point sets and simultaneously takes into account the PINN-imposed biomechanics. The proposed method has been both developed and validated in both patient-specific and multi-patient manner.
使用物理信息神经网络的非刚性医学图像配准
软组织的生物力学建模提供了一种非数据驱动的方法来约束医学图像配准,这样估计的空间变换被认为是生物物理上可信的。这不仅在现实世界的临床应用中被采用,例如本研究中感兴趣的前列腺介入的MR-to-ultrasound registration,而且还提供了一种理解器官运动和空间对应建立的可解释的方法。这项工作将最近提出的物理信息神经网络(pinn)实例化为三维线性弹性模型,用于模拟经直肠超声引导过程中常见的前列腺运动。为了克服将pinn推广到不同主题的广泛公认的挑战,我们建议使用PointNet作为节点置换不变特征提取器,以及对齐点集并同时考虑pinn施加的生物力学的配准算法。所提出的方法已在患者特异性和多患者方式中开发和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信