Zhiming Cui, Bojun Zhang, C. Lian, Changjian Li, Lei Yang, Wenping Wang, Min Zhu, D. Shen
{"title":"Hierarchical Morphology-Guided Tooth Instance Segmentation from CBCT Images","authors":"Zhiming Cui, Bojun Zhang, C. Lian, Changjian Li, Lei Yang, Wenping Wang, Min Zhu, D. Shen","doi":"10.1007/978-3-030-78191-0_12","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_12","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"56 1","pages":"150-162"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74350696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semi-Supervised Screening of COVID-19 from Positive and Unlabeled Data with Constraint Non-Negative Risk Estimator","authors":"Zhongyi Han, Rundong He, Tianyang Li, B. Wei, Jian Wang, Yilong Yin","doi":"10.1007/978-3-030-78191-0_47","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_47","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"1 1","pages":"611-623"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90206705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nested Grassmanns for Dimensionality Reduction with Applications to Shape Analysis","authors":"Chun-Hao Yang, B. Vemuri","doi":"10.1007/978-3-030-78191-0_11","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_11","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"1 1","pages":"136-149"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90210546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haleh Akrami, Anand Joshi, Sergul Aydore, Richard Leahy
{"title":"Quantile Regression for Uncertainty Estimation in VAEs with Applications to Brain Lesion Detection.","authors":"Haleh Akrami, Anand Joshi, Sergul Aydore, Richard Leahy","doi":"10.1007/978-3-030-78191-0_53","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_53","url":null,"abstract":"<p><p>The Variational AutoEncoder (VAE) has become one of the most popular models for anomaly detection in applications such as lesion detection in medical images. The VAE is a generative graphical model that is used to learn the data distribution from samples and then generate new samples from this distribution. By training on normal samples, the VAE can be used to detect inputs that deviate from this learned distribution. The VAE models the output as a conditionally independent Gaussian characterized by means and variances for each output dimension. VAEs can therefore use reconstruction probability instead of reconstruction error for anomaly detection. Unfortunately, joint optimization of both mean and variance in the VAE leads to the well-known problem of shrinkage or underestimation of variance. We describe an alternative VAE model, Quantile-Regression VAE (QR-VAE), that avoids this variance shrinkage problem by estimating conditional quantiles for the given input image. Using the estimated quantiles, we compute the conditional mean and variance for input images under the Gaussian model. We then compute reconstruction probability using this model as a principled approach to outlier or anomaly detection. We also show how our approach can be used for heterogeneous thresholding of images for detecting lesions in brain images.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":" ","pages":"689-700"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321392/pdf/nihms-1723560.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39264529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suprosanna Shit, Dhritiman Das, I. Ezhov, J. Paetzold, A. F. Sanches, N. Thürey, Bjoern H Menze
{"title":"Velocity-To-Pressure (V2P) - Net: Inferring Relative Pressures from Time-Varying 3D Fluid Flow Velocities","authors":"Suprosanna Shit, Dhritiman Das, I. Ezhov, J. Paetzold, A. F. Sanches, N. Thürey, Bjoern H Menze","doi":"10.1007/978-3-030-78191-0_42","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_42","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"93 1","pages":"545-558"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85490491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Probabilistic Framework for Modeling the Variability Across Federated Datasets","authors":"Irene Balelli, R. SantiagoS.Silva, Marco Lorenzi","doi":"10.1007/978-3-030-78191-0_54","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_54","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"106 1","pages":"701-714"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78029189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mixture Modeling for Identifying Subtypes in Disease Course Mapping","authors":"Pierre-Emmanuel Poulet, S. Durrleman","doi":"10.1007/978-3-030-78191-0_44","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_44","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"45 1","pages":"571-582"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76462013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geodesic Tubes for Uncertainty Quantification in Diffusion MRI","authors":"Rick Sengers, L. Florack, A. Fuster","doi":"10.1007/978-3-030-78191-0_22","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_22","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"41 1","pages":"279-290"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90159376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Feature Library: A Benchmark for Cervical Lesion Segmentation","authors":"Yuexiang Li, Jiawei Chen, Kai Ma, Yefeng Zheng","doi":"10.1007/978-3-030-78191-0_34","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_34","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"1 1","pages":"440-451"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86043172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel H. Pak, Minliang Liu, S. Ahn, A. Caballero, John A. Onofrey, L. Liang, Wei Sun, J. Duncan
{"title":"Weakly Supervised Deep Learning for Aortic Valve Finite Element Mesh Generation from 3D CT Images","authors":"Daniel H. Pak, Minliang Liu, S. Ahn, A. Caballero, John A. Onofrey, L. Liang, Wei Sun, J. Duncan","doi":"10.1007/978-3-030-78191-0_49","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_49","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"241 1","pages":"637-648"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75917390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}