Quantile Regression for Uncertainty Estimation in VAEs with Applications to Brain Lesion Detection.

Haleh Akrami, Anand Joshi, Sergul Aydore, Richard Leahy
{"title":"Quantile Regression for Uncertainty Estimation in VAEs with Applications to Brain Lesion Detection.","authors":"Haleh Akrami,&nbsp;Anand Joshi,&nbsp;Sergul Aydore,&nbsp;Richard Leahy","doi":"10.1007/978-3-030-78191-0_53","DOIUrl":null,"url":null,"abstract":"<p><p>The Variational AutoEncoder (VAE) has become one of the most popular models for anomaly detection in applications such as lesion detection in medical images. The VAE is a generative graphical model that is used to learn the data distribution from samples and then generate new samples from this distribution. By training on normal samples, the VAE can be used to detect inputs that deviate from this learned distribution. The VAE models the output as a conditionally independent Gaussian characterized by means and variances for each output dimension. VAEs can therefore use reconstruction probability instead of reconstruction error for anomaly detection. Unfortunately, joint optimization of both mean and variance in the VAE leads to the well-known problem of shrinkage or underestimation of variance. We describe an alternative VAE model, Quantile-Regression VAE (QR-VAE), that avoids this variance shrinkage problem by estimating conditional quantiles for the given input image. Using the estimated quantiles, we compute the conditional mean and variance for input images under the Gaussian model. We then compute reconstruction probability using this model as a principled approach to outlier or anomaly detection. We also show how our approach can be used for heterogeneous thresholding of images for detecting lesions in brain images.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":" ","pages":"689-700"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321392/pdf/nihms-1723560.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information processing in medical imaging : proceedings of the ... conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-78191-0_53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The Variational AutoEncoder (VAE) has become one of the most popular models for anomaly detection in applications such as lesion detection in medical images. The VAE is a generative graphical model that is used to learn the data distribution from samples and then generate new samples from this distribution. By training on normal samples, the VAE can be used to detect inputs that deviate from this learned distribution. The VAE models the output as a conditionally independent Gaussian characterized by means and variances for each output dimension. VAEs can therefore use reconstruction probability instead of reconstruction error for anomaly detection. Unfortunately, joint optimization of both mean and variance in the VAE leads to the well-known problem of shrinkage or underestimation of variance. We describe an alternative VAE model, Quantile-Regression VAE (QR-VAE), that avoids this variance shrinkage problem by estimating conditional quantiles for the given input image. Using the estimated quantiles, we compute the conditional mean and variance for input images under the Gaussian model. We then compute reconstruction probability using this model as a principled approach to outlier or anomaly detection. We also show how our approach can be used for heterogeneous thresholding of images for detecting lesions in brain images.

分位数回归的不确定性估计及其在脑损伤检测中的应用。
变分自编码器(VAE)已成为医学图像中病变检测等应用中最流行的异常检测模型之一。VAE是一种生成图形模型,用于从样本中学习数据分布,然后从该分布中生成新的样本。通过对正态样本的训练,VAE可以用来检测偏离这个学习分布的输入。VAE将输出建模为一个条件独立的高斯模型,该模型由每个输出维度的均值和方差表征。因此,VAEs可以使用重构概率代替重构误差进行异常检测。不幸的是,在VAE中对均值和方差进行联合优化会导致众所周知的方差收缩或低估问题。我们描述了另一种VAE模型,分位数回归VAE (QR-VAE),它通过估计给定输入图像的条件分位数来避免这种方差收缩问题。利用估计的分位数,我们在高斯模型下计算输入图像的条件均值和方差。然后,我们使用该模型作为离群值或异常检测的原则方法来计算重建概率。我们还展示了我们的方法如何用于检测脑图像病变的图像的异构阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信