Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep Learning Framework Incorporating Laplace's Equation

S. Ravikumar, Ranjit Itttyerah, Sydney A. Lim, L. Xie, Sandhitsu R. Das, Pulkit Khandelwal, L. Wisse, M. Bedard, John L. Robinson, Terry K. Schuck, M. Grossman, J. Trojanowski, Eddie B. Lee, M. Tisdall, K. Prabhakaran, J. Detre, D. Irwin, Winifred Trotman, G. Mizsei, Emilio Artacho-P'erula, Maria Mercedes Iniguez de Onzono Martin, Maria del Mar Arroyo Jim'enez, M. Muñoz, Francisco Javier Molina Romero, M. Rabal, Sandra Cebada-S'anchez, J. Gonz'alez, C. Rosa-Prieto, Marta Córcoles Parada, D. Wolk, R. Insausti, Paul Yushkevich
{"title":"Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep Learning Framework Incorporating Laplace's Equation","authors":"S. Ravikumar, Ranjit Itttyerah, Sydney A. Lim, L. Xie, Sandhitsu R. Das, Pulkit Khandelwal, L. Wisse, M. Bedard, John L. Robinson, Terry K. Schuck, M. Grossman, J. Trojanowski, Eddie B. Lee, M. Tisdall, K. Prabhakaran, J. Detre, D. Irwin, Winifred Trotman, G. Mizsei, Emilio Artacho-P'erula, Maria Mercedes Iniguez de Onzono Martin, Maria del Mar Arroyo Jim'enez, M. Muñoz, Francisco Javier Molina Romero, M. Rabal, Sandra Cebada-S'anchez, J. Gonz'alez, C. Rosa-Prieto, Marta Córcoles Parada, D. Wolk, R. Insausti, Paul Yushkevich","doi":"10.48550/arXiv.2303.00795","DOIUrl":null,"url":null,"abstract":"When developing tools for automated cortical segmentation, the ability to produce topologically correct segmentations is important in order to compute geometrically valid morphometry measures. In practice, accurate cortical segmentation is challenged by image artifacts and the highly convoluted anatomy of the cortex itself. To address this, we propose a novel deep learning-based cortical segmentation method in which prior knowledge about the geometry of the cortex is incorporated into the network during the training process. We design a loss function which uses the theory of Laplace's equation applied to the cortex to locally penalize unresolved boundaries between tightly folded sulci. Using an ex vivo MRI dataset of human medial temporal lobe specimens, we demonstrate that our approach outperforms baseline segmentation networks, both quantitatively and qualitatively.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"146 1","pages":"692-704"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information processing in medical imaging : proceedings of the ... conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.00795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When developing tools for automated cortical segmentation, the ability to produce topologically correct segmentations is important in order to compute geometrically valid morphometry measures. In practice, accurate cortical segmentation is challenged by image artifacts and the highly convoluted anatomy of the cortex itself. To address this, we propose a novel deep learning-based cortical segmentation method in which prior knowledge about the geometry of the cortex is incorporated into the network during the training process. We design a loss function which uses the theory of Laplace's equation applied to the cortex to locally penalize unresolved boundaries between tightly folded sulci. Using an ex vivo MRI dataset of human medial temporal lobe specimens, we demonstrate that our approach outperforms baseline segmentation networks, both quantitatively and qualitatively.
基于拉普拉斯方程的深度学习框架改进皮层灰质深沟分割
在开发自动皮层分割工具时,为了计算几何上有效的形态测量,生成拓扑正确分割的能力是很重要的。在实践中,准确的皮层分割受到图像伪影和皮层本身高度复杂的解剖结构的挑战。为了解决这个问题,我们提出了一种新的基于深度学习的皮层分割方法,该方法在训练过程中将皮层几何形状的先验知识整合到网络中。我们设计了一个损失函数,该函数使用拉普拉斯方程理论应用于皮层,以局部惩罚紧密折叠沟之间未解决的边界。使用人类内侧颞叶标本的离体MRI数据集,我们证明了我们的方法在定量和定性上都优于基线分割网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信