Shohei Noguchi, M. Yamada, Yoshihiro Watanabe, M. Ishikawa
{"title":"Real-time 3D page tracking and book status recognition for high-speed book digitization based on adaptive capturing","authors":"Shohei Noguchi, M. Yamada, Yoshihiro Watanabe, M. Ishikawa","doi":"10.1109/WACV.2014.6836108","DOIUrl":"https://doi.org/10.1109/WACV.2014.6836108","url":null,"abstract":"In this paper, we propose a new book digitization system that can obtain high-resolution document images while flipping the pages automatically. The distinctive feature of our system is the adaptive capturing that has a crucial role in achieving high speed and high resolution. This adaptive capturing requires observing the state of the flipped pages at high speed and with high accuracy. In order to meet this requirement, we newly propose a method of obtaining the 3D shape of the book, tracking each page, and evaluating the state. In addition, we explain the details of the proposed high-speed book digitization system. We also report some experiments conducted to verify the performance of the developed system.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"41 1","pages":"137-144"},"PeriodicalIF":0.0,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85222491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Rehan, Aamer Zaheer, Ijaz Akhter, Arfah Saeed, M. Usmani, Bilal Mahmood, Sohaib Khan
{"title":"NRSfM using local rigidity","authors":"A. Rehan, Aamer Zaheer, Ijaz Akhter, Arfah Saeed, M. Usmani, Bilal Mahmood, Sohaib Khan","doi":"10.1109/WACV.2014.6836116","DOIUrl":"https://doi.org/10.1109/WACV.2014.6836116","url":null,"abstract":"In this paper we show that typical nonrigid structure can often be approximated well as locally rigid sub-structures in time and space. Specifically, we assume that: 1) the structure can be approximated as rigid in a short local time window and 2) some point- pairs stay relatively rigid in space, maintaining a fixed distance between them during the sequence. First, we use the triangulation constraints in rigid SfM over a sliding time window to get an initial estimate of the nonrigid 3D structure. Then we automatically identify relatively rigid point-pairs in this structure, and use their length-constancy simultaneously with triangulation constraints to refine the structure estimate. Local factorization inherently handles small camera motion, short sequences and significant natural occlusions gracefully, performing better than nonrigid factorization methods. We show more stable and accurate results as compared to the state-of-the art on even short sequences starting from 15 frames only, containing camera rotations as small as 2° and up to 50% contiguous missing data.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"14 1","pages":"69-74"},"PeriodicalIF":0.0,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81993638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Max residual classifier","authors":"H. Nguyen, Vishal M. Patel","doi":"10.1109/WACV.2014.6836050","DOIUrl":"https://doi.org/10.1109/WACV.2014.6836050","url":null,"abstract":"We introduce a novel classifier, called max residual classifier (MRC), for learning a sparse representation jointly with a discriminative decision function. MRC seeks to maximize the differences between the residual errors of the wrong classes and the right one. This effectively leads to a more discriminative sparse representation and better classification accuracy. The optimization procedure is simple and efficient. Its objective function is closely related to the decision function of the residual classification strategy. Unlike existing methods for learning discriminative sparse representation that are restricted to a linear model, our approach is able to work with a non-linear model via the use of Mercer kernel. Experimental results show that MRC is able to capture meaningful and compact structures of data. Its performances compare favourably with the current state of the art on challenging benchmarks including rotated MNIST, Caltech-101, Caltech-256, and SHREC'11 non-rigid 3D shapes.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"7 1","pages":"580-587"},"PeriodicalIF":0.0,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82576513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. J. Afridi, Chun Liu, C. Chan, S. Baek, Xiaoming Liu
{"title":"Image segmentation of mesenchymal stem cells in diverse culturing conditions","authors":"M. J. Afridi, Chun Liu, C. Chan, S. Baek, Xiaoming Liu","doi":"10.1109/WACV.2014.6836058","DOIUrl":"https://doi.org/10.1109/WACV.2014.6836058","url":null,"abstract":"Researchers in the areas of regenerative medicine and tissue engineering have great interests in understanding the relationship of different sets of culturing conditions and applied mechanical stimuli to the behavior of mesenchymal stem cells (MSCs). However, it is challenging to design a tool to perform automatic cell image analysis due to the diverse morphologies of MSCs. Therefore, as a primary step towards developing the tool, we propose a novel approach for accurate cell image segmentation. We collected three MSC datasets cultured on different surfaces and exposed to diverse mechanical stimuli. By analyzing existing approaches on our data, we choose to substantially extend binarization-based extraction of alignment score (BEAS) approach by extracting novel discriminating features and developing an adaptive threshold estimation model. Experimental results on our data shows our approach is superior to seven conventional techniques. We also define three quantitative measures to analyze the characteristics of images in our datasets. To the best of our knowledge, this is the first study that applied automatic segmentation to live MSC cultured on different surfaces with applied stimuli.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"55 1","pages":"516-523"},"PeriodicalIF":0.0,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89194629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Video segmentation with joint object and trajectory labeling","authors":"M. Yang, B. Rosenhahn","doi":"10.1109/WACV.2014.6836017","DOIUrl":"https://doi.org/10.1109/WACV.2014.6836017","url":null,"abstract":"Unsupervised video object segmentation is a challenging problem because it involves a large amount of data and object appearance may significantly change over time. In this paper, we propose a bottom-up approach for the combination of object segmentation and motion segmentation using a novel graphical model, which is formulated as inference in a conditional random field (CRF) model. This model combines object labeling and trajectory clustering in a unified probabilistic framework. The CRF contains binary variables representing the class labels of image pixels as well as binary variables indicating the correctness of trajectory clustering, which integrates dense local interaction and sparse global constraint. An optimization scheme based on a coordinate ascent style procedure is proposed to solve the inference problem. We evaluate our proposed framework by comparing it to other video and motion segmentation algorithms. Our method achieves improved performance on state-of-the-art benchmark datasets.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"11 1","pages":"831-838"},"PeriodicalIF":0.0,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89947162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Consensus-based matching and tracking of keypoints for object tracking","authors":"G. Nebehay, R. Pflugfelder","doi":"10.1109/WACV.2014.6836013","DOIUrl":"https://doi.org/10.1109/WACV.2014.6836013","url":null,"abstract":"We propose a novel keypoint-based method for long-term model-free object tracking in a combined matching-and-tracking framework. In order to localise the object in every frame, each keypoint casts votes for the object center. As erroneous keypoints are hard to avoid, we employ a novel consensus-based scheme for outlier detection in the voting behaviour. To make this approach computationally feasible, we propose not to employ an accumulator space for votes, but rather to cluster votes directly in the image space. By transforming votes based on the current keypoint constellation, we account for changes of the object in scale and rotation. In contrast to competing approaches, we refrain from updating the appearance information, thus avoiding the danger of making errors. The use of fast keypoint detectors and binary descriptors allows for our implementation to run in real-time. We demonstrate experimentally on a diverse dataset that is as large as 60 sequences that our method outperforms the state-of-the-art when high accuracy is required and visualise these results by employing a variant of success plots.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2 1","pages":"862-869"},"PeriodicalIF":0.0,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88963142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"System for semi-automated surveying of street-lighting poles from street-level panoramic images","authors":"L. Hazelhoff, Ivo M. Creusen, P. D. With","doi":"10.1109/WACV.2014.6836109","DOIUrl":"https://doi.org/10.1109/WACV.2014.6836109","url":null,"abstract":"Accurate and up-to-date inventories of lighting poles are of interest to energy companies, beneficial for the transition to energy-efficient lighting and may contribute to a more adequate lighting of streets. This potentially improves social security and reduces crime and vandalism during nighttime. This paper describes a system for automated surveying of lighting poles from street-level panoramic images. The system consists of two independent detectors, focusing at the detection of the pole itself and at the detection of a specific lighting fixture type. Both follow the same approach, and start with detection of the feature of interest (pole or fixture) within the individual images, followed by a multi-view analysis to retrieve the real-world coordinates of the poles. Afterwards, the detection output of both algorithms is merged. Large-scale validations, covering about 135 km of road, show that over 91% of the lighting poles is found, while the precision remains above 50%. When applying this system in a semi-automated fashion, high-quality inventories can be created up to 5 times more efficiently compared to manually surveying all poles from the images.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"120 1","pages":"129-136"},"PeriodicalIF":0.0,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86167045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhangyang Wang, Zhaowen Wang, Shiyu Chang, Jianchao Yang, Thomas S. Huang
{"title":"A joint perspective towards image super-resolution: Unifying external- and self-examples","authors":"Zhangyang Wang, Zhaowen Wang, Shiyu Chang, Jianchao Yang, Thomas S. Huang","doi":"10.1109/WACV.2014.6836048","DOIUrl":"https://doi.org/10.1109/WACV.2014.6836048","url":null,"abstract":"Existing example-based super resolution (SR) methods are built upon either external-examples or self-examples. Although effective in certain cases, both methods suffer from their inherent limitation. This paper goes beyond these two classes of most common example-based SR approaches, and proposes a novel joint SR perspective. The joint SR exploits and maximizes the complementary advantages of external- and self-example based methods. We elaborate on exploitable priors for image components of different nature, and formulate their corresponding loss functions mathematically. Equipped with that, we construct a unified SR formulation, and propose an iterative joint super resolution (IJSR) algorithm to solve the optimization. Such a joint perspective approach leads to an impressive improvement of SR results both quantitatively and qualitatively.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"55 1","pages":"596-603"},"PeriodicalIF":0.0,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77366545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hoan Nguyen, Thomas Fasciano, D. Charbonneau, A. Dornhaus, M. Shin
{"title":"Data association based ant tracking with interactive error correction","authors":"Hoan Nguyen, Thomas Fasciano, D. Charbonneau, A. Dornhaus, M. Shin","doi":"10.1109/WACV.2014.6836003","DOIUrl":"https://doi.org/10.1109/WACV.2014.6836003","url":null,"abstract":"The tracking of ants in video is important for the analysis of their complex group behavior. However, the manual analysis of these videos is tedious and time consuming. Automated tracking methods tend to drift due to frequent occlusions during their interactions and similarity in appearance. Semi-automated tracking methods enable corrections of tracking errors by incorporating user interaction. Although it is much lower than manual analysis, the required user time of the existing method is still typically 23 times the actual video length. In this paper, we propose a new semi-automated method that achieves similar accuracy while reducing the user interaction time by (1) mitigating user wait time by incorporating a data association tracking method to separate the tracking from user correction, and (2) minimizing the number of candidates visualized for user during correction. This proposed method is able to reduce the user interaction time by 67% while maintaining the accuracy within 3% of the previous semi-automated method [11].","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"33 1","pages":"941-946"},"PeriodicalIF":0.0,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90699019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yin Cui, Yongzhou Xiang, Kun Rong, R. Feris, Liangliang Cao
{"title":"A spatial-color layout feature for representing galaxy images","authors":"Yin Cui, Yongzhou Xiang, Kun Rong, R. Feris, Liangliang Cao","doi":"10.1109/WACV.2014.6836098","DOIUrl":"https://doi.org/10.1109/WACV.2014.6836098","url":null,"abstract":"We propose a spatial-color layout feature specially designed for galaxy images. Inspired by findings on galaxy formation and evolution from Astronomy, the proposed feature captures both global and local morphological information of galaxies. In addition, our feature is scale and rotation invariant. By developing a hashing-based approach with the proposed feature, we implemented an efficient galaxy image retrieval system on a dataset with more than 280 thousand galaxy images from the Sloan Digital Sky Survey project. Given a query image, the proposed system can rank-order all galaxies from the dataset according to relevance in only 35 milliseconds on a single PC. To the best of our knowledge, this is one of the first works on galaxy-specific feature design and large-scale galaxy image retrieval. We evaluated the performance of the proposed feature and the galaxy image retrieval system using web user annotations, showing that the proposed feature outperforms other classic features, including HOG, Gist, LBP, and Color-histograms. The success of our retrieval system demonstrates the advantages of leveraging computer vision techniques in Astronomy problems.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"66 1","pages":"213-219"},"PeriodicalIF":0.0,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91133205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}