{"title":"从街道全景图像半自动测量街道灯杆的系统","authors":"L. Hazelhoff, Ivo M. Creusen, P. D. With","doi":"10.1109/WACV.2014.6836109","DOIUrl":null,"url":null,"abstract":"Accurate and up-to-date inventories of lighting poles are of interest to energy companies, beneficial for the transition to energy-efficient lighting and may contribute to a more adequate lighting of streets. This potentially improves social security and reduces crime and vandalism during nighttime. This paper describes a system for automated surveying of lighting poles from street-level panoramic images. The system consists of two independent detectors, focusing at the detection of the pole itself and at the detection of a specific lighting fixture type. Both follow the same approach, and start with detection of the feature of interest (pole or fixture) within the individual images, followed by a multi-view analysis to retrieve the real-world coordinates of the poles. Afterwards, the detection output of both algorithms is merged. Large-scale validations, covering about 135 km of road, show that over 91% of the lighting poles is found, while the precision remains above 50%. When applying this system in a semi-automated fashion, high-quality inventories can be created up to 5 times more efficiently compared to manually surveying all poles from the images.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"120 1","pages":"129-136"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"System for semi-automated surveying of street-lighting poles from street-level panoramic images\",\"authors\":\"L. Hazelhoff, Ivo M. Creusen, P. D. With\",\"doi\":\"10.1109/WACV.2014.6836109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and up-to-date inventories of lighting poles are of interest to energy companies, beneficial for the transition to energy-efficient lighting and may contribute to a more adequate lighting of streets. This potentially improves social security and reduces crime and vandalism during nighttime. This paper describes a system for automated surveying of lighting poles from street-level panoramic images. The system consists of two independent detectors, focusing at the detection of the pole itself and at the detection of a specific lighting fixture type. Both follow the same approach, and start with detection of the feature of interest (pole or fixture) within the individual images, followed by a multi-view analysis to retrieve the real-world coordinates of the poles. Afterwards, the detection output of both algorithms is merged. Large-scale validations, covering about 135 km of road, show that over 91% of the lighting poles is found, while the precision remains above 50%. When applying this system in a semi-automated fashion, high-quality inventories can be created up to 5 times more efficiently compared to manually surveying all poles from the images.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"120 1\",\"pages\":\"129-136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6836109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
System for semi-automated surveying of street-lighting poles from street-level panoramic images
Accurate and up-to-date inventories of lighting poles are of interest to energy companies, beneficial for the transition to energy-efficient lighting and may contribute to a more adequate lighting of streets. This potentially improves social security and reduces crime and vandalism during nighttime. This paper describes a system for automated surveying of lighting poles from street-level panoramic images. The system consists of two independent detectors, focusing at the detection of the pole itself and at the detection of a specific lighting fixture type. Both follow the same approach, and start with detection of the feature of interest (pole or fixture) within the individual images, followed by a multi-view analysis to retrieve the real-world coordinates of the poles. Afterwards, the detection output of both algorithms is merged. Large-scale validations, covering about 135 km of road, show that over 91% of the lighting poles is found, while the precision remains above 50%. When applying this system in a semi-automated fashion, high-quality inventories can be created up to 5 times more efficiently compared to manually surveying all poles from the images.