基于共识的目标跟踪关键点匹配与跟踪

G. Nebehay, R. Pflugfelder
{"title":"基于共识的目标跟踪关键点匹配与跟踪","authors":"G. Nebehay, R. Pflugfelder","doi":"10.1109/WACV.2014.6836013","DOIUrl":null,"url":null,"abstract":"We propose a novel keypoint-based method for long-term model-free object tracking in a combined matching-and-tracking framework. In order to localise the object in every frame, each keypoint casts votes for the object center. As erroneous keypoints are hard to avoid, we employ a novel consensus-based scheme for outlier detection in the voting behaviour. To make this approach computationally feasible, we propose not to employ an accumulator space for votes, but rather to cluster votes directly in the image space. By transforming votes based on the current keypoint constellation, we account for changes of the object in scale and rotation. In contrast to competing approaches, we refrain from updating the appearance information, thus avoiding the danger of making errors. The use of fast keypoint detectors and binary descriptors allows for our implementation to run in real-time. We demonstrate experimentally on a diverse dataset that is as large as 60 sequences that our method outperforms the state-of-the-art when high accuracy is required and visualise these results by employing a variant of success plots.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2 1","pages":"862-869"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"166","resultStr":"{\"title\":\"Consensus-based matching and tracking of keypoints for object tracking\",\"authors\":\"G. Nebehay, R. Pflugfelder\",\"doi\":\"10.1109/WACV.2014.6836013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel keypoint-based method for long-term model-free object tracking in a combined matching-and-tracking framework. In order to localise the object in every frame, each keypoint casts votes for the object center. As erroneous keypoints are hard to avoid, we employ a novel consensus-based scheme for outlier detection in the voting behaviour. To make this approach computationally feasible, we propose not to employ an accumulator space for votes, but rather to cluster votes directly in the image space. By transforming votes based on the current keypoint constellation, we account for changes of the object in scale and rotation. In contrast to competing approaches, we refrain from updating the appearance information, thus avoiding the danger of making errors. The use of fast keypoint detectors and binary descriptors allows for our implementation to run in real-time. We demonstrate experimentally on a diverse dataset that is as large as 60 sequences that our method outperforms the state-of-the-art when high accuracy is required and visualise these results by employing a variant of success plots.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"2 1\",\"pages\":\"862-869\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"166\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6836013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 166

摘要

提出了一种基于关键点的无模型长期目标跟踪方法。为了在每一帧中定位对象,每个关键点对对象中心进行投票。由于错误的关键点难以避免,我们采用了一种新的基于共识的方案来检测投票行为中的异常值。为了使这种方法在计算上可行,我们建议不为投票使用累加器空间,而是直接在图像空间中对投票进行聚类。通过基于当前关键点星座的投票转换,我们考虑了物体在尺度和旋转上的变化。与竞争的方法相比,我们避免了更新外观信息,从而避免了出错的危险。使用快速关键点检测器和二进制描述符允许我们的实现实时运行。我们在多达60个序列的不同数据集上通过实验证明,当需要高精度时,我们的方法优于最先进的方法,并通过采用成功图的变体来可视化这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consensus-based matching and tracking of keypoints for object tracking
We propose a novel keypoint-based method for long-term model-free object tracking in a combined matching-and-tracking framework. In order to localise the object in every frame, each keypoint casts votes for the object center. As erroneous keypoints are hard to avoid, we employ a novel consensus-based scheme for outlier detection in the voting behaviour. To make this approach computationally feasible, we propose not to employ an accumulator space for votes, but rather to cluster votes directly in the image space. By transforming votes based on the current keypoint constellation, we account for changes of the object in scale and rotation. In contrast to competing approaches, we refrain from updating the appearance information, thus avoiding the danger of making errors. The use of fast keypoint detectors and binary descriptors allows for our implementation to run in real-time. We demonstrate experimentally on a diverse dataset that is as large as 60 sequences that our method outperforms the state-of-the-art when high accuracy is required and visualise these results by employing a variant of success plots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信