IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics最新文献

筛选
英文 中文
Attention-based Imputation of Missing Values in Electronic Health Records Tabular Data. 基于注意力的电子健康记录表格数据缺失值估算。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00030
Ibna Kowsar, Shourav B Rabbani, Manar D Samad
{"title":"Attention-based Imputation of Missing Values in Electronic Health Records Tabular Data.","authors":"Ibna Kowsar, Shourav B Rabbani, Manar D Samad","doi":"10.1109/ichi61247.2024.00030","DOIUrl":"10.1109/ichi61247.2024.00030","url":null,"abstract":"<p><p>The imputation of missing values (IMV) in electronic health records tabular data is crucial to enable machine learning for patient-specific predictive modeling. While IMV methods are developed in biostatistics and recently in machine learning, deep learning-based solutions have shown limited success in learning tabular data. This paper proposes a novel attention-based missing value imputation framework that learns to reconstruct data with missing values leveraging between-feature (self-attention) or between-sample attentions. We adopt data manipulation methods used in contrastive learning to improve the generalization of the trained imputation model. The proposed self-attention imputation method outperforms state-of-the-art statistical and machine learning-based (decision-tree) imputation methods, reducing the normalized root mean squared error by 18.4% to 74.7% on five tabular data sets and 52.6% to 82.6% on two electronic health records data sets. The proposed attention-based missing value imputation method shows superior performance across a wide range of missingness (10% to 50%) when the values are missing completely at random.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"177-182"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Professional Radiologists' Expertise to Enhance LLMs' Evaluation for AI-generated Radiology Reports. 利用专业放射学专家的专业知识,加强法律硕士对人工智能生成的放射学报告的评估。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00058
Qingqing Zhu, Xiuying Chen, Qiao Jin, Benjamin Hou, Tejas Sudharshan Mathai, Pritam Mukherjee, Xin Gao, Ronald M Summers, Zhiyong Lu
{"title":"Leveraging Professional Radiologists' Expertise to Enhance LLMs' Evaluation for AI-generated Radiology Reports.","authors":"Qingqing Zhu, Xiuying Chen, Qiao Jin, Benjamin Hou, Tejas Sudharshan Mathai, Pritam Mukherjee, Xin Gao, Ronald M Summers, Zhiyong Lu","doi":"10.1109/ichi61247.2024.00058","DOIUrl":"10.1109/ichi61247.2024.00058","url":null,"abstract":"<p><p>In radiology, Artificial Intelligence (AI) has significantly advanced report generation, but automatic evaluation of these AI-produced reports remains challenging. Current metrics, such as Conventional Natural Language Generation (NLG) and Clinical Efficacy (CE), often fall short in capturing the semantic intricacies of clinical contexts or overemphasize clinical details, undermining report clarity. To overcome these issues, our proposed method synergizes the expertise of professional radiologists with Large Language Models (LLMs), like GPT-3.5 and GPT-4. Utilizing In-Context Instruction Learning (ICIL) and Chain of Thought (CoT) reasoning, our approach aligns LLM evaluations with radiologist standards, enabling detailed comparisons between human and AI-generated reports. This is further enhanced by a Regression model that aggregates sentence evaluation scores. Experimental results show that our \"Detailed GPT-4 (5-shot)\" model achieves a correlation that is 0.48, outperforming the METEOR metric by 0.19, while our \"Regressed GPT-4\" model shows even greater alignment(0.64) with expert evaluations, exceeding the best existing metric by a 0.35 margin. Moreover, the robustness of our explanations has been validated through a thorough iterative strategy. We plan to publicly release annotations from radiology experts, setting a new standard for accuracy in future assessments. This underscores the potential of our approach in enhancing the quality assessment of AI-driven medical reports.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"402-411"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing. 用自然语言处理从临床叙述中识别谵妄症状
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00046
Aokun Chen, Daniel Paredes, Zehao Yu, Xiwei Lou, Roberta Brunson, Jamie N Thomas, Kimberly A Martinez, Robert J Lucero, Tanja Magoc, Laurence M Solberg, Urszula A Snigurska, Sarah E Ser, Mattia Prosperi, Jiang Bian, Ragnhildur I Bjarnadottir, Yonghui Wu
{"title":"Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing.","authors":"Aokun Chen, Daniel Paredes, Zehao Yu, Xiwei Lou, Roberta Brunson, Jamie N Thomas, Kimberly A Martinez, Robert J Lucero, Tanja Magoc, Laurence M Solberg, Urszula A Snigurska, Sarah E Ser, Mattia Prosperi, Jiang Bian, Ragnhildur I Bjarnadottir, Yonghui Wu","doi":"10.1109/ichi61247.2024.00046","DOIUrl":"10.1109/ichi61247.2024.00046","url":null,"abstract":"<p><p>Delirium is an acute decline or fluctuation in attention, awareness, or other cognitive function that can lead to serious adverse outcomes. Despite the severe outcomes, delirium is frequently unrecognized and uncoded in patients' electronic health records (EHRs) due to its transient and diverse nature. Natural language processing (NLP), a key technology that extracts medical concepts from clinical narratives, has shown great potential in studies of delirium outcomes and symptoms. To assist in the diagnosis and phenotyping of delirium, we formed an expert panel to categorize diverse delirium symptoms, composed annotation guidelines, created a delirium corpus with diverse delirium symptoms, and developed NLP methods to extract delirium symptoms from clinical notes. We compared 5 state-of-the-art transformer models including 2 models (BERT and RoBERTa) from the general domain and 3 models (BERT_MIMIC, RoBERTa_MIMIC, and GatorTron) from the clinical domain. GatorTron achieved the best strict and lenient F1 scores of 0.8055 and 0.8759, respectively. We conducted an error analysis to identify challenges in annotating delirium symptoms and developing NLP systems. To the best of our knowledge, this is the first large language model-based delirium symptom extraction system. Our study lays the foundation for the future development of computable phenotypes and diagnosis methods for delirium.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"305-311"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning to Rank Complex Biomedical Hypotheses for Accelerating Scientific Discovery.
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00044
Juncheng Ding, Shailesh Dahal, Bijaya Adhikari, Kishlay Jha
{"title":"Learning to Rank Complex Biomedical Hypotheses for Accelerating Scientific Discovery.","authors":"Juncheng Ding, Shailesh Dahal, Bijaya Adhikari, Kishlay Jha","doi":"10.1109/ichi61247.2024.00044","DOIUrl":"10.1109/ichi61247.2024.00044","url":null,"abstract":"<p><p>Hypothesis generation (HG) is a fundamental problem in biomedical text mining that uncovers plausible implicit links ( <math><mi>B</mi></math> terms) between two disjoint concepts of interest ( <math><mi>A</mi></math> and <math><mi>C</mi></math> terms). Over the past decade, many HG approaches based on distributional statistics, graph-theoretic measures, and supervised machine learning methods have been proposed. Despite significant advances made, the existing approaches have two major limitations. First, they mainly focus on enumerating hypotheses and often neglect to rank them in a semantically meaningful way. This leads to wasted time and resources as researchers may focus on hypotheses that are ultimately not supported by experimental evidence. Second, the existing approaches are designed to rank hypotheses with only one intermediate or evidence term (referred as simple hypotheses), and thus are unable to handle hypotheses with multiple intermediate terms (referred as complex hypotheses). This is limiting because recent research has shown that the complex hypotheses could be of greater practical value than simple ones, especially in the early stages of scientific discovery. To address these issues, we propose a new HG ranking approach that leverages upon the expressive power of Graph Neural Networks (GNN) coupled with a domain-knowledge guided Noise-Contrastive Estimation (NCE) strategy to effectively rank both simple and complex biomedical hypotheses. Specifically, the message passing capabilities of GNN allows our approach to capture the rich interactions between biomedical entities and succinctly handle the complex hypotheses with variable intermediate terms. Moreover, the proposed domain knowledge-guided NCE strategy enables the ranking of complex hypotheses based on their coherence with the established biomedical knowledge. Extensive experiment results on five recognized biomedical datasets show that the proposed approach consistently outperforms the existing baselines and prioritizes hypotheses worthy of potential clinical trials.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"285-293"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length k between genome pairs. 一种平均情况下高效的两阶段算法,用于枚举基因组对之间最小长度为 k 的所有最长公共子串。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00020
Mattia Prosperi, Simone Marini, Christina Boucher
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length <ns0:math><ns0:mi>k</ns0:mi></ns0:math> between genome pairs.","authors":"Mattia Prosperi, Simone Marini, Christina Boucher","doi":"10.1109/ichi61247.2024.00020","DOIUrl":"10.1109/ichi61247.2024.00020","url":null,"abstract":"<p><p>A problem extension of the longest common substring (LCS) between two texts is the enumeration of all LCSs given a minimum length <math><mi>k</mi></math> (ALCS- <math><mi>k</mi></math> ), along with their positions in each text. In bioinformatics, an efficient solution to the ALCS- <math><mi>k</mi></math> for very long texts -genomes or metagenomes- can provide useful insights to discover genetic signatures responsible for biological mechanisms. The ALCS- <math><mi>k</mi></math> problem has two additional requirements compared to the LCS problem: one is the minimum length <math><mi>k</mi></math> , and the other is that all common strings longer than <math><mi>k</mi></math> must be reported. We present an efficient, two-stage ALCS- <math><mi>k</mi></math> algorithm exploiting the spectrum of text substrings of length <math><mi>k</mi></math> ( <math><mi>k</mi></math> -mers). Our approach yields a worst-case time complexity loglinear in the number of <math><mi>k</mi></math> -mers for the first stage, and an average-case loglinear in the number of common <math><mi>k</mi></math> -mers for the second stage (several orders of magnitudes smaller than the total <math><mi>k</mi></math> -mer spectrum). The space complexity is linear in the first phase (disk-based), and on average linear in the second phase (disk- and memory-based). Tests performed on genomes for different organisms (including viruses, bacteria and animal chromosomes) show that run times are consistent with our theoretical estimates; further, comparisons with MUMmer4 show an asymptotic advantage with divergent genomes.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"93-102"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assertion Detection in Clinical Natural Language Processing using Large Language Models.
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00039
Yuelyu Ji, Zeshui Yu, Yanshan Wang
{"title":"Assertion Detection in Clinical Natural Language Processing using Large Language Models.","authors":"Yuelyu Ji, Zeshui Yu, Yanshan Wang","doi":"10.1109/ichi61247.2024.00039","DOIUrl":"10.1109/ichi61247.2024.00039","url":null,"abstract":"<p><p>In this study, we aim to address the task of assertion detection when extracting medical concepts from clinical notes, a key process in clinical natural language processing (NLP). Assertion detection in clinical NLP usually involves identifying assertion types for medical concepts in the clinical text, namely certainty (whether the medical concept is positive, negated, possible, or hypothetical), temporality (whether the medical concept is for present or the past history), and experiencer (whether the medical concept is described for the patient or a family member). These assertion types are essential for healthcare professionals to quickly and clearly understand the context of medical conditions from unstructured clinical texts, directly influencing the quality and outcomes of patient care. Although widely used, traditional methods, particularly rule-based NLP systems and machine learning or deep learning models, demand intensive manual efforts to create patterns and tend to overlook less common assertion types, leading to an incomplete understanding of the context. To address this challenge, our research introduces a novel methodology that utilizes Large Language Models (LLMs) pre-trained on a vast array of medical data for assertion detection. We enhanced the current method with advanced reasoning techniques, including Tree of Thought (ToT), Chain of Thought (CoT), and Self-Consistency (SC), and refine it further with Low-Rank Adaptation (LoRA) fine-tuning. We first evaluated the model on the i2b2 2010 assertion dataset. Our method achieved a micro-averaged F-1 of 0.89, with 0.11 improvements over the previous works. To further assess the generalizability of our approach, we extended our evaluation to a local dataset that focused on sleep concept extraction. Our approach achieved an F-1 of 0.74, which is 0.31 higher than the previous method. The results show that using LLMs is a viable option for assertion detection in clinical NLP and can potentially integrate with other LLM-based concept extraction models for clinical NLP tasks.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"242-247"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a computational representation of human physical activity and exercise using open ontology-based approach: a Tai Chi use case. 使用基于开放本体的方法开发人类体育活动和运动的计算表征:太极使用案例。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00012
Eloisa Nguyen, Rebecca Z Lin, Yang Gong, Cui Tao, Muhammad Tuan Amith
{"title":"Developing a computational representation of human physical activity and exercise using open ontology-based approach: a Tai Chi use case.","authors":"Eloisa Nguyen, Rebecca Z Lin, Yang Gong, Cui Tao, Muhammad Tuan Amith","doi":"10.1109/ichi61247.2024.00012","DOIUrl":"10.1109/ichi61247.2024.00012","url":null,"abstract":"<p><p>Many studies have examined the impact of exercise and other physical activities in influencing the health outcomes of individuals. These physical activities entail an intricate sequence and series of physical anatomy, physiological movement, movement of the anatomy, etc. To better understand how these components interact with one another and their downstream impact on health outcomes, there needs to be an information model that conceptualizes all entities involved. In this study, we introduced our early development of an ontology model to computationally describe human physical activities and the various entities that compose each activity. We developed an open-sourced biomedical ontology called the Kinetic Human Movement Ontology that reused OBO Foundry terminologies and encoded in OWL2. We applied this ontology in modeling and linking a specific Tai Chi movement. The contribution of this work could enable modeling of information relating to human physical activity, like exercise, and lead towards information standardization of human movement for analysis. Future work will include expanding our ontology to include more expressive information and completely modeling entire sets of movement from human physical activity.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"31-39"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups. 分析社会因素,加强不同人群的自杀预防。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00032
Richard Li Xu, Song Wang, Zewei Wang, Yuhan Zhang, Yunyu Xiao, Jyotishman Pathak, David Hodge, Yan Leng, S Craig Watkins, Ying Ding, Yifan Peng
{"title":"Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups.","authors":"Richard Li Xu, Song Wang, Zewei Wang, Yuhan Zhang, Yunyu Xiao, Jyotishman Pathak, David Hodge, Yan Leng, S Craig Watkins, Ying Ding, Yifan Peng","doi":"10.1109/ichi61247.2024.00032","DOIUrl":"10.1109/ichi61247.2024.00032","url":null,"abstract":"<p><p>Social factors like family background, education level, financial status, and stress can impact public health outcomes, such as suicidal ideation. However, the analysis of social factors for suicide prevention has been limited by the lack of up-to-date suicide reporting data, variations in reporting practices, and small sample sizes. In this study, we analyzed 172,629 suicide incidents from 2014 to 2020 utilizing the National Violent Death Reporting System Restricted Access Database (NVDRS-RAD). Logistic regression models were developed to examine the relationships between demographics and suicide-related circumstances. Trends over time were assessed, and Latent Dirichlet Allocation (LDA) was used to identify common suicide-related social factors. Mental health, interpersonal relationships, mental health treatment and disclosure, and school/work-related stressors were identified as the main themes of suicide-related social factors. This study also identified systemic disparities across various population groups, particularly concerning Black individuals, young people aged under 24, healthcare practitioners, and those with limited education backgrounds, which shed light on potential directions for demographic-specific suicidal interventions.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"189-199"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Large Language Models for Clinical Decision Support by Incorporating Clinical Practice Guidelines.
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00111
David Oniani, Xizhi Wu, Shyam Visweswaran, Sumit Kapoor, Shravan Kooragayalu, Katelyn Polanska, Yanshan Wang
{"title":"Enhancing Large Language Models for Clinical Decision Support by Incorporating Clinical Practice Guidelines.","authors":"David Oniani, Xizhi Wu, Shyam Visweswaran, Sumit Kapoor, Shravan Kooragayalu, Katelyn Polanska, Yanshan Wang","doi":"10.1109/ichi61247.2024.00111","DOIUrl":"https://doi.org/10.1109/ichi61247.2024.00111","url":null,"abstract":"<p><p>Large Language Models (LLMs), enhanced with Clinical Practice Guidelines (CPGs), can significantly improve Clinical Decision Support (CDS). However, approaches for incorporating CPGs into LLMs are not well studied. In this study, we develop three distinct methods for incorporating CPGs into LLMs: Binary Decision Tree (BDT), Program-Aided Graph Construction (PAGC), and Chain-of-Thought-Few-Shot Prompting (CoT-FSP), and focus on CDS for COVID-19 outpatient treatment as the case study. Zero-Shot Prompting (ZSP) is our baseline method. To evaluate the effectiveness of the proposed methods, we create a set of synthetic patient descriptions and conduct both automatic and human evaluation of the responses generated by four LLMs: GPT-4, GPT-3.5 Turbo, LLaMA, and PaLM 2. All four LLMs exhibit improved performance when enhanced with CPGs compared to the baseline ZSP. BDT outperformed both CoT-FSP and PAGC in automatic evaluation. All of the proposed methods demonstrate high performance in human evaluation. LLMs enhanced with CPGs outperform plain LLMs with ZSP in providing accurate recommendations for COVID-19 outpatient treatment, highlighting the potential for broader applications beyond the case study.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"694-702"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Task Deep Neural Networks for Irregularly Sampled Multivariate Clinical Time Series. 不规则采样多变量临床时间序列的多任务深度神经网络。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00025
Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Jiang Bian
{"title":"Multi-Task Deep Neural Networks for Irregularly Sampled Multivariate Clinical Time Series.","authors":"Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Jiang Bian","doi":"10.1109/ichi61247.2024.00025","DOIUrl":"10.1109/ichi61247.2024.00025","url":null,"abstract":"<p><p>Multivariate clinical time series data, such as those contained in Electronic Health Records (EHR), often exhibit high levels of irregularity, notably, many missing values and varying time intervals. Existing methods usually construct deep neural network architectures that combine recurrent neural networks and time decay mechanisms to model variable correlations, impute missing values, and capture the impact of varying time intervals. The complete data matrices thus obtained from the imputation task are used for downstream risk prediction tasks. This study aims to achieve more desirable imputation and prediction accuracy by performing both tasks simultaneously. We present a new multi-task deep neural network that incorporates the imputation task as an auxiliary task while performing risk prediction tasks. We validate the method on clinical time series imputation and in-hospital mortality prediction tasks using two publicly available EHR databases. The experimental results show that our method outperforms state-of-the-art imputation-prediction methods by significant margins. The results also empirically demonstrate that the incorporation of time decay mechanisms is a critical factor for superior imputation and prediction performance. The novel deep imputation-prediction network proposed in this study provides more accurate imputation and prediction results with EHR data. Future work should focus on developing more effective time decay mechanisms for simultaneously enhancing the imputation and prediction performance of multi-task learning models.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"135-140"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信