IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics最新文献

筛选
英文 中文
CareD: Caregiver's Experience with Cognitive Decline in Reddit Posts. CareD:照顾者在 Reddit 帖子中对认知能力衰退的体验。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2023-06-01 Epub Date: 2023-12-11 DOI: 10.1109/ichi57859.2023.00104
Muskan Garg, Sunghwan Sohn
{"title":"CareD: Caregiver's Experience with Cognitive Decline in Reddit Posts.","authors":"Muskan Garg, Sunghwan Sohn","doi":"10.1109/ichi57859.2023.00104","DOIUrl":"10.1109/ichi57859.2023.00104","url":null,"abstract":"<p><p>With advancements in analysis of cognitive decline in electronic health records, the research community witnesses a recent surge in social media posting by caregivers and/or loved ones of people with cognitive decline. The major challenges in this area are availability of large and diverse datasets, ethics of data collection and sharing, diagnostic specificity and clinical acceptability. To this end, we construct a new dataset, Caregivers experiences with cognitive Decline (CareD), of 1005 posts with more than 194K words and 9541 sentences, highlighting discussions on people with dementia and Alzheimer's disease on Reddit. We discuss the changing trends of discussions on cognitive decline in social media and open challenges for natural language processing and social computing. We first identify the Reddit posts reflecting substantial information as candidate posts. We further formulate the annotation guidelines, handle perplexities to investigate the existence of experiences, self-reported articles and potential caregiver in candidate posts, resulting in the discovery of latent symptoms, firsthand information, and prospective source of longitudinal information about the patient, respectively.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877621/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-to-End n-ary Relation Extraction for Combination Drug Therapies. 联合药物疗法的端到端 nary 关系提取。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2023-06-01 Epub Date: 2023-12-11 DOI: 10.1109/ichi57859.2023.00021
Yuhang Jiang, Ramakanth Kavuluru
{"title":"End-to-End <i>n</i>-ary Relation Extraction for Combination Drug Therapies.","authors":"Yuhang Jiang, Ramakanth Kavuluru","doi":"10.1109/ichi57859.2023.00021","DOIUrl":"10.1109/ichi57859.2023.00021","url":null,"abstract":"<p><p>Combination drug therapies are treatment regimens that involve two or more drugs, administered more commonly for patients with cancer, HIV, malaria, or tuberculosis. Currently there are over 350K articles in PubMed that use the <b>combination drug therapy</b> MeSH heading with at least 10K articles published per year over the past two decades. Extracting combination therapies from scientific literature inherently constitutes an <i>n</i>-ary relation extraction problem. Unlike in the general <i>n</i>-ary setting where <i>n</i> is fixed (e.g., drug-gene-mutation relations where <i>n</i> = 3), extracting combination therapies is a special setting where <i>n</i> ≥ 2 is dynamic, depending on each instance. Recently, Tiktinsky et al. (NAACL 2022) introduced a first of its kind dataset, <b>CombDrugExt</b>, for extracting such therapies from literature. Here, we use a sequence-to-sequence style end-to-end extraction method to achieve an F1-Score of 66.7% on the <b>CombDrugExt</b> test set for positive (or effective) combinations. This is an absolute <i>≈</i> 5% F1-score improvement even over the prior best relation classification score with spotted drug entities (hence, not end-to-end). Thus our effort introduces a state-of-the-art first model for end-to-end extraction that is already superior to the best prior non end-to-end model for this task. Our model seamlessly extracts all drug entities and relations in a single pass and is highly suitable for dynamic <i>n</i>-ary extraction scenarios.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10814995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inferring Personalized Treatment Effect of Antihypertensives on Alzheimer's Disease Using Deep Learning. 利用深度学习推断抗高血压药对阿尔茨海默病的个性化治疗效果
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2023-06-01 Epub Date: 2023-12-11 DOI: 10.1109/ichi57859.2023.00018
Pulakesh Upadhyaya, Yaobin Ling, Luyao Chen, Yejin Kim, Xiaoqian Jiang
{"title":"Inferring Personalized Treatment Effect of Antihypertensives on Alzheimer's Disease Using Deep Learning.","authors":"Pulakesh Upadhyaya, Yaobin Ling, Luyao Chen, Yejin Kim, Xiaoqian Jiang","doi":"10.1109/ichi57859.2023.00018","DOIUrl":"10.1109/ichi57859.2023.00018","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is one of the leading causes of death in the United States, especially among the elderly. Recent studies have shown how hypertension is related to cognitive decline in elderly patients, which in turn leads to increased mortality as well as morbidity. There have been various studies that have looked at the effect of antihypertensive drugs in reducing cognitive decline, and their results have proved inconclusive. However, most of these studies assume the treatment effect is similar for all patients, thus considering only the average treatment effects of antihypertensive drugs. In this paper, we assume that the effect of antihypertensives on the onset of AD depends on patient characteristics. We develop a deep learning method called LASSO-Dragonnet to estimate the individualized treatment effects of each patient. We considered six antihypertensive drugs, and each of the six models considered one of the drugs as the treatment and the remaining as control. Our studies showed that although many antihypertensives have a positive impact in delaying AD onset on average, the impact varies from individual to individual, depending on their various characteristics. We also analyzed the importance of various covariates in such an estimation. Our results showed that the individualized treatment effects of each patient could be estimated accurately using a deep learning method, and that the importance of various covariates could be determined.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph Neural Network Modeling of Web Search Activity for Real-time Pandemic Forecasting. 用于实时流行病预测的网络搜索活动图神经网络模型。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2023-06-01 Epub Date: 2023-12-11 DOI: 10.1109/ichi57859.2023.00027
Chen Lin, Jianghong Zhou, Jing Zhang, Carl Yang, Eugene Agichtein
{"title":"Graph Neural Network Modeling of Web Search Activity for Real-time Pandemic Forecasting.","authors":"Chen Lin, Jianghong Zhou, Jing Zhang, Carl Yang, Eugene Agichtein","doi":"10.1109/ichi57859.2023.00027","DOIUrl":"10.1109/ichi57859.2023.00027","url":null,"abstract":"<p><p>The utilization of web search activity for pandemic forecasting has significant implications for managing disease spread and informing policy decisions. However, web search records tend to be noisy and influenced by geographical location, making it difficult to develop large-scale models. While regularized linear models have been effective in predicting the spread of respiratory illnesses like COVID-19, they are limited to specific locations. The lack of incorporation of neighboring areas' data and the inability to transfer models to new locations with limited data has impeded further progress. To address these limitations, this study proposes a novel self-supervised message-passing neural network (SMPNN) framework for modeling local and cross-location dynamics in pandemic forecasting. The SMPNN framework utilizes an MPNN module to learn cross-location dependencies through self-supervised learning and improve local predictions with graph-generated features. The framework is designed as an end-to-end solution and is compared with state-of-the-art statistical and deep learning models using COVID-19 data from England and the US. The results of the study demonstrate that the SMPNN model outperforms other models by achieving up to a 6.9% improvement in prediction accuracy and lower prediction errors during the early stages of disease outbreaks. This approach represents a significant advancement in disease surveillance and forecasting, providing a novel methodology, datasets, and insights that combine web search data and spatial information. The proposed SMPNN framework offers a promising avenue for modeling the spread of pandemics, leveraging both local and cross-location information, and has the potential to inform public health policy decisions.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-to-End Models for Chemical-Protein Interaction Extraction: Better Tokenization and Span-Based Pipeline Strategies. 化学-蛋白质相互作用提取的端到端模型:更好的标记化和基于跨度的管道策略
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2023-06-01 Epub Date: 2023-12-11 DOI: 10.1109/ichi57859.2023.00108
Xuguang Ai, Ramakanth Kavuluru
{"title":"End-to-End Models for Chemical-Protein Interaction Extraction: Better Tokenization and Span-Based Pipeline Strategies.","authors":"Xuguang Ai, Ramakanth Kavuluru","doi":"10.1109/ichi57859.2023.00108","DOIUrl":"10.1109/ichi57859.2023.00108","url":null,"abstract":"<p><p>End-to-end relation extraction (E2ERE) is an important task in information extraction, more so for biomedicine as scientific literature continues to grow exponentially. E2ERE typically involves identifying entities (or named entity recognition (NER)) and associated relations, while most RE tasks simply assume that the entities are provided upfront and end up performing relation classification. E2ERE is inherently more difficult than RE alone given the potential snowball effect of errors from NER leading to more errors in RE. A complex dataset in biomedical E2ERE is the ChemProt dataset (BioCreative VI, 2017) that identifies relations between chemical compounds and genes/proteins in scientific literature. ChemProt is included in all recent biomedical natural language processing benchmarks including BLUE, BLURB, and BigBio. However, its treatment in these benchmarks and in other separate efforts is typically not end-to-end, with few exceptions. In this effort, we employ a span-based pipeline approach to produce a new state-of-the-art E2ERE performance on the ChemProt dataset, resulting in > 4% improvement in F1-score over the prior best effort. Our results indicate that a straightforward fine-grained tokenization scheme helps span-based approaches excel in E2ERE, especially with regards to handling complex named entities. Our error analysis also identifies a few key failure modes in E2ERE for ChemProt.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139565432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of COVID-19 Patients' Emergency Room Revisit using Multi-Source Transfer Learning. 利用多源迁移学习预测 COVID-19 患者的急诊室复诊率。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2023-06-01 Epub Date: 2023-12-11 DOI: 10.1109/ICHI57859.2023.00028
Yuelyu Ji, Yuhe Gao, Runxue Bao, Qi Li, Disheng Liu, Yiming Sun, Ye Ye
{"title":"Prediction of COVID-19 Patients' Emergency Room Revisit using Multi-Source Transfer Learning.","authors":"Yuelyu Ji, Yuhe Gao, Runxue Bao, Qi Li, Disheng Liu, Yiming Sun, Ye Ye","doi":"10.1109/ICHI57859.2023.00028","DOIUrl":"10.1109/ICHI57859.2023.00028","url":null,"abstract":"<p><p>The coronavirus disease 2019 (COVID-19) has led to a global pandemic of significant severity. In addition to its high level of contagiousness, COVID-19 can have a heterogeneous clinical course, ranging from asymptomatic carriers to severe and potentially life-threatening health complications. Many patients have to revisit the emergency room (ER) within a short time after discharge, which significantly increases the workload for medical staff. Early identification of such patients is crucial for helping physicians focus on treating life-threatening cases. In this study, we obtained Electronic Health Records (EHRs) of 3,210 encounters from 13 affiliated ERs within the University of Pittsburgh Medical Center between March 2020 and January 2021. We leveraged a Natural Language Processing technique, ScispaCy, to extract clinical concepts and used the 1001 most frequent concepts to develop 7-day revisit models for COVID-19 patients in ERs. The research data we collected were obtained from 13 ERs, which may have distributional differences that could affect the model development. To address this issue, we employed a classic deep transfer learning method called the Domain Adversarial Neural Network (DANN) and evaluated different modeling strategies, including the Multi-DANN algorithm (which considers the source differences), the Single-DANN algorithm (which doesn't consider the source differences), and three baseline methods: using only source data, using only target data, and using a mixture of source and target data. Results showed that the Multi-DANN models outperformed the Single-DANN models and baseline models in predicting revisits of COVID-19 patients to the ER within 7 days after discharge (median AUROC = 0.8 vs. 0.5). Notably, the Multi-DANN strategy effectively addressed the heterogeneity among multiple source domains and improved the adaptation of source data to the target domain. Moreover, the high performance of Multi-DANN models indicates that EHRs are informative for developing a prediction model to identify COVID-19 patients who are very likely to revisit an ER within 7 days after discharge.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Named Entity Recognition and Normalization for Alzheimer's Disease Eligibility Criteria. 阿尔茨海默病资格标准的命名实体识别和规范化。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2023-06-01 Epub Date: 2023-12-11 DOI: 10.1109/ichi57859.2023.00100
Zenan Sun, Cui Tao
{"title":"Named Entity Recognition and Normalization for Alzheimer's Disease Eligibility Criteria.","authors":"Zenan Sun, Cui Tao","doi":"10.1109/ichi57859.2023.00100","DOIUrl":"10.1109/ichi57859.2023.00100","url":null,"abstract":"<p><p>Alzheimer's Disease (AD) is a complex neurodegenerative disorder that affects millions of people worldwide. Finding effective treatments for this disease is crucial. Clinical trials play an essential role in developing and testing new treatments for AD. However, identifying eligible participants can be challenging, time-consuming, and costly. In recent years, the development of natural language processing (NLP) techniques, specifically named entity recognition (NER) and named entity normalization (NEN), have helped to automate the identification and extraction of relevant information from the eligibility criteria (EC) more efficiently, in order to facilitate semi-automatic patient recruitment and enable data FAIRness for clinical trial data. Nevertheless, most current biomedical NER models only provide annotations for a restricted set of entity types that may not be applicable to the clinical trial data. Additionally, accurately performing NEN on entities that are negated using a negative prefix currently lacks established techniques. In this paper, we introduce a pipeline designed for information extraction from AD clinical trial EC, which involves preprocessing of the EC data, clinical NER, and biomedical NEN to Unified Medical Language System (UMLS). Our NER model can identify named entities in seven pre-defined categories, while our NEN model employs a combination of exact match and partial match search strategies, as well as customized rules to accurately normalize entities with negative prefixes. To evaluate the performance of our pipeline, we measured the precision, recall, and F1 score for the NER component, and we manually reviewed the top five mapping results produced by the NEN component. Our evaluation of the pipeline's performance revealed that it can successfully normalize named entities in clinical trial ECs with optimal accuracies. The NER component achieved a overall F1 of 0.816, demonstrating its ability to accurately identify seven types of named entities in clinical text. The NEN component of the pipeline also demonstrated impressive performance, with customized rules and a combination of exact and partial match strategies leading to an accuracy of 0.940 for normalized entities.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Effect of Eligibility Criteria on AD Severity and Severe Adverse Event in Eligible Patients. 探讨合格标准对符合条件的患者的注意力缺失严重程度和严重不良事件的影响。
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2023-06-01 Epub Date: 2023-12-11 DOI: 10.1109/ichi57859.2023.00139
Aokun Chen, Qian Li, Elizabeth Shenkman, Yonghui Wu, Yi Guo, Jiang Bian
{"title":"Exploring the Effect of Eligibility Criteria on AD Severity and Severe Adverse Event in Eligible Patients.","authors":"Aokun Chen, Qian Li, Elizabeth Shenkman, Yonghui Wu, Yi Guo, Jiang Bian","doi":"10.1109/ichi57859.2023.00139","DOIUrl":"10.1109/ichi57859.2023.00139","url":null,"abstract":"<p><p>Clinical trials were vital tools to prove the effectiveness and safety of medications. To maximize generalizability, the study sample should represent the sample population and the target population. However, the clinical trial design tends to favor the evaluation of drug safety and procedure (i.e., internal validity) without clear knowledge of its penalty on trial generalizability (i.e., external validity). Alzheimer's Disease (AD) trials are known to have generalizability issues. Thus, in this study, we explore the effect of eligibility criteria on the AD severity patients and the severe adverse event (SAE) among the eligible patients.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating Membership Inference in Deep Learning Applications with High Dimensional Genomic Data. 基于高维基因组数据的深度学习应用中的隶属推理缓解。
Chonghao Zhang, Luca Bonomi
{"title":"Mitigating Membership Inference in Deep Learning Applications with High Dimensional Genomic Data.","authors":"Chonghao Zhang,&nbsp;Luca Bonomi","doi":"10.1109/ichi54592.2022.00101","DOIUrl":"https://doi.org/10.1109/ichi54592.2022.00101","url":null,"abstract":"<p><p>The use of deep learning techniques in medical applications holds great promises for advancing health care. However, there are growing privacy concerns regarding what information about individual data contributors (i.e., patients in the training set) these deep models may reveal when shared with external users. In this work, we first investigate the membership privacy risks in sharing deep learning models for cancer genomics tasks, and then study the applicability of privacy-protecting strategies for mitigating these privacy risks.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473339/pdf/nihms-1815588.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10181248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mining Social Media Data to Predict COVID-19 Case Counts. 挖掘社交媒体数据预测COVID-19病例数
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics Pub Date : 2022-06-01 Epub Date: 2022-09-08 DOI: 10.1109/ichi54592.2022.00027
Maksims Kazijevs, Furkan A Akyelken, Manar D Samad
{"title":"Mining Social Media Data to Predict COVID-19 Case Counts.","authors":"Maksims Kazijevs,&nbsp;Furkan A Akyelken,&nbsp;Manar D Samad","doi":"10.1109/ichi54592.2022.00027","DOIUrl":"https://doi.org/10.1109/ichi54592.2022.00027","url":null,"abstract":"<p><p>The unpredictability and unknowns surrounding the ongoing coronavirus disease (COVID-19) pandemic have led to an unprecedented consequence taking a heavy toll on the lives and economies of all countries. There have been efforts to predict COVID-19 case counts (CCC) using epidemiological data and numerical tokens online, which may allow early preventive measures to slow the spread of the disease. In this paper, we use state-of-the-art natural language processing (NLP) algorithms to numerically encode COVID-19 related tweets originated from eight cities in the United States and predict city-specific CCC up to eight days in the future. A city-embedding is proposed to obtain a time series representation of daily tweets posted from a city, which is then used to predict case counts using a custom long-short term memory (LSTM) model. The universal sentence encoder yields the best normalized root mean squared error (NRMSE) 0.090 (0.039), averaged across all cities in predicting CCC six days in the future. The <i>R</i> <sup>2</sup> scores in predicting CCC are more than 0.70 and often over 0.8, which suggests a strong correlation between the actual and our model predicted CCC values. Our analyses show that the NRMSE and <i>R</i> <sup>2</sup> scores are consistently robust across different cities and different numbers of time steps in time series data. Results show that the LSTM model can learn the mapping between the NLP-encoded tweet semantics and the case counts, which infers that social media text can be directly mined to identify the future course of the pandemic.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490453/pdf/nihms-1836082.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33477762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信