评估医学成像中的生成模型。

Liyue Fan, Ashley Bang, Luca Bonomi
{"title":"评估医学成像中的生成模型。","authors":"Liyue Fan, Ashley Bang, Luca Bonomi","doi":"10.1109/ichi61247.2024.00084","DOIUrl":null,"url":null,"abstract":"<p><p>Data synthesis can address important data availability challenges in biomedical informatics. Quantitative evaluation of generative models may help understand their applications to synthesizing biomedical data. This poster paper examines state-of-the-art generative models used in medical imaging, such as StyleGAN and DDPM models, and evaluates their performance in learning data manifolds and in the visible features of generated samples. Results show that existing generative models have much to improve based on the studied measures.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508590/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating Generative Models in Medical Imaging.\",\"authors\":\"Liyue Fan, Ashley Bang, Luca Bonomi\",\"doi\":\"10.1109/ichi61247.2024.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data synthesis can address important data availability challenges in biomedical informatics. Quantitative evaluation of generative models may help understand their applications to synthesizing biomedical data. This poster paper examines state-of-the-art generative models used in medical imaging, such as StyleGAN and DDPM models, and evaluates their performance in learning data manifolds and in the visible features of generated samples. Results show that existing generative models have much to improve based on the studied measures.</p>\",\"PeriodicalId\":73284,\"journal\":{\"name\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508590/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ichi61247.2024.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ichi61247.2024.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据合成可以解决生物医学信息学中重要的数据可用性挑战。对生成模型进行定量评估有助于了解它们在生物医学数据合成中的应用。这篇海报论文研究了医学成像中使用的最先进的生成模型,如 StyleGAN 和 DDPM 模型,并评估了它们在学习数据流形和生成样本的可见特征方面的性能。结果表明,根据所研究的指标,现有的生成模型还有很多需要改进的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Generative Models in Medical Imaging.

Data synthesis can address important data availability challenges in biomedical informatics. Quantitative evaluation of generative models may help understand their applications to synthesizing biomedical data. This poster paper examines state-of-the-art generative models used in medical imaging, such as StyleGAN and DDPM models, and evaluates their performance in learning data manifolds and in the visible features of generated samples. Results show that existing generative models have much to improve based on the studied measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信