用自然语言处理从临床叙述中识别谵妄症状

Aokun Chen, Daniel Paredes, Zehao Yu, Xiwei Lou, Roberta Brunson, Jamie N Thomas, Kimberly A Martinez, Robert J Lucero, Tanja Magoc, Laurence M Solberg, Urszula A Snigurska, Sarah E Ser, Mattia Prosperi, Jiang Bian, Ragnhildur I Bjarnadottir, Yonghui Wu
{"title":"用自然语言处理从临床叙述中识别谵妄症状","authors":"Aokun Chen, Daniel Paredes, Zehao Yu, Xiwei Lou, Roberta Brunson, Jamie N Thomas, Kimberly A Martinez, Robert J Lucero, Tanja Magoc, Laurence M Solberg, Urszula A Snigurska, Sarah E Ser, Mattia Prosperi, Jiang Bian, Ragnhildur I Bjarnadottir, Yonghui Wu","doi":"10.1109/ichi61247.2024.00046","DOIUrl":null,"url":null,"abstract":"<p><p>Delirium is an acute decline or fluctuation in attention, awareness, or other cognitive function that can lead to serious adverse outcomes. Despite the severe outcomes, delirium is frequently unrecognized and uncoded in patients' electronic health records (EHRs) due to its transient and diverse nature. Natural language processing (NLP), a key technology that extracts medical concepts from clinical narratives, has shown great potential in studies of delirium outcomes and symptoms. To assist in the diagnosis and phenotyping of delirium, we formed an expert panel to categorize diverse delirium symptoms, composed annotation guidelines, created a delirium corpus with diverse delirium symptoms, and developed NLP methods to extract delirium symptoms from clinical notes. We compared 5 state-of-the-art transformer models including 2 models (BERT and RoBERTa) from the general domain and 3 models (BERT_MIMIC, RoBERTa_MIMIC, and GatorTron) from the clinical domain. GatorTron achieved the best strict and lenient F1 scores of 0.8055 and 0.8759, respectively. We conducted an error analysis to identify challenges in annotating delirium symptoms and developing NLP systems. To the best of our knowledge, this is the first large language model-based delirium symptom extraction system. Our study lays the foundation for the future development of computable phenotypes and diagnosis methods for delirium.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"305-311"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670120/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing.\",\"authors\":\"Aokun Chen, Daniel Paredes, Zehao Yu, Xiwei Lou, Roberta Brunson, Jamie N Thomas, Kimberly A Martinez, Robert J Lucero, Tanja Magoc, Laurence M Solberg, Urszula A Snigurska, Sarah E Ser, Mattia Prosperi, Jiang Bian, Ragnhildur I Bjarnadottir, Yonghui Wu\",\"doi\":\"10.1109/ichi61247.2024.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Delirium is an acute decline or fluctuation in attention, awareness, or other cognitive function that can lead to serious adverse outcomes. Despite the severe outcomes, delirium is frequently unrecognized and uncoded in patients' electronic health records (EHRs) due to its transient and diverse nature. Natural language processing (NLP), a key technology that extracts medical concepts from clinical narratives, has shown great potential in studies of delirium outcomes and symptoms. To assist in the diagnosis and phenotyping of delirium, we formed an expert panel to categorize diverse delirium symptoms, composed annotation guidelines, created a delirium corpus with diverse delirium symptoms, and developed NLP methods to extract delirium symptoms from clinical notes. We compared 5 state-of-the-art transformer models including 2 models (BERT and RoBERTa) from the general domain and 3 models (BERT_MIMIC, RoBERTa_MIMIC, and GatorTron) from the clinical domain. GatorTron achieved the best strict and lenient F1 scores of 0.8055 and 0.8759, respectively. We conducted an error analysis to identify challenges in annotating delirium symptoms and developing NLP systems. To the best of our knowledge, this is the first large language model-based delirium symptom extraction system. Our study lays the foundation for the future development of computable phenotypes and diagnosis methods for delirium.</p>\",\"PeriodicalId\":73284,\"journal\":{\"name\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"volume\":\"2024 \",\"pages\":\"305-311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670120/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ichi61247.2024.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ichi61247.2024.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

谵妄是注意力、意识或其他认知功能的急性下降或波动,可导致严重的不良后果。尽管谵妄的后果严重,但由于其短暂性和多样性,谵妄在患者的电子健康记录(EHRs)中经常未被识别和未编码。自然语言处理(NLP)是一项从临床叙述中提取医学概念的关键技术,在谵妄结局和症状的研究中显示出巨大的潜力。为了帮助谵妄的诊断和分型,我们组建了专家小组对谵妄的多种症状进行分类,编写了注释指南,创建了包含多种谵妄症状的谵妄语料库,并开发了从临床记录中提取谵妄症状的NLP方法。我们比较了5种最先进的变压器模型,其中2种模型(BERT和RoBERTa)来自一般领域,3种模型(BERT_MIMIC, RoBERTa_MIMIC和GatorTron)来自临床领域。GatorTron在严格F1和宽松F1中得分最高,分别为0.8055和0.8759。我们进行了错误分析,以确定在注释谵妄症状和开发NLP系统方面的挑战。据我们所知,这是第一个基于语言模型的谵妄症状提取系统。本研究为今后谵妄的可计算表型和诊断方法的发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing.

Delirium is an acute decline or fluctuation in attention, awareness, or other cognitive function that can lead to serious adverse outcomes. Despite the severe outcomes, delirium is frequently unrecognized and uncoded in patients' electronic health records (EHRs) due to its transient and diverse nature. Natural language processing (NLP), a key technology that extracts medical concepts from clinical narratives, has shown great potential in studies of delirium outcomes and symptoms. To assist in the diagnosis and phenotyping of delirium, we formed an expert panel to categorize diverse delirium symptoms, composed annotation guidelines, created a delirium corpus with diverse delirium symptoms, and developed NLP methods to extract delirium symptoms from clinical notes. We compared 5 state-of-the-art transformer models including 2 models (BERT and RoBERTa) from the general domain and 3 models (BERT_MIMIC, RoBERTa_MIMIC, and GatorTron) from the clinical domain. GatorTron achieved the best strict and lenient F1 scores of 0.8055 and 0.8759, respectively. We conducted an error analysis to identify challenges in annotating delirium symptoms and developing NLP systems. To the best of our knowledge, this is the first large language model-based delirium symptom extraction system. Our study lays the foundation for the future development of computable phenotypes and diagnosis methods for delirium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信