{"title":"一种平均情况下高效的两阶段算法,用于枚举基因组对之间最小长度为 k 的所有最长公共子串。","authors":"Mattia Prosperi, Simone Marini, Christina Boucher","doi":"10.1109/ichi61247.2024.00020","DOIUrl":null,"url":null,"abstract":"<p><p>A problem extension of the longest common substring (LCS) between two texts is the enumeration of all LCSs given a minimum length <math><mi>k</mi></math> (ALCS- <math><mi>k</mi></math> ), along with their positions in each text. In bioinformatics, an efficient solution to the ALCS- <math><mi>k</mi></math> for very long texts -genomes or metagenomes- can provide useful insights to discover genetic signatures responsible for biological mechanisms. The ALCS- <math><mi>k</mi></math> problem has two additional requirements compared to the LCS problem: one is the minimum length <math><mi>k</mi></math> , and the other is that all common strings longer than <math><mi>k</mi></math> must be reported. We present an efficient, two-stage ALCS- <math><mi>k</mi></math> algorithm exploiting the spectrum of text substrings of length <math><mi>k</mi></math> ( <math><mi>k</mi></math> -mers). Our approach yields a worst-case time complexity loglinear in the number of <math><mi>k</mi></math> -mers for the first stage, and an average-case loglinear in the number of common <math><mi>k</mi></math> -mers for the second stage (several orders of magnitudes smaller than the total <math><mi>k</mi></math> -mer spectrum). The space complexity is linear in the first phase (disk-based), and on average linear in the second phase (disk- and memory-based). Tests performed on genomes for different organisms (including viruses, bacteria and animal chromosomes) show that run times are consistent with our theoretical estimates; further, comparisons with MUMmer4 show an asymptotic advantage with divergent genomes.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"93-102"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412151/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length <ns0:math><ns0:mi>k</ns0:mi></ns0:math> between genome pairs.\",\"authors\":\"Mattia Prosperi, Simone Marini, Christina Boucher\",\"doi\":\"10.1109/ichi61247.2024.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A problem extension of the longest common substring (LCS) between two texts is the enumeration of all LCSs given a minimum length <math><mi>k</mi></math> (ALCS- <math><mi>k</mi></math> ), along with their positions in each text. In bioinformatics, an efficient solution to the ALCS- <math><mi>k</mi></math> for very long texts -genomes or metagenomes- can provide useful insights to discover genetic signatures responsible for biological mechanisms. The ALCS- <math><mi>k</mi></math> problem has two additional requirements compared to the LCS problem: one is the minimum length <math><mi>k</mi></math> , and the other is that all common strings longer than <math><mi>k</mi></math> must be reported. We present an efficient, two-stage ALCS- <math><mi>k</mi></math> algorithm exploiting the spectrum of text substrings of length <math><mi>k</mi></math> ( <math><mi>k</mi></math> -mers). Our approach yields a worst-case time complexity loglinear in the number of <math><mi>k</mi></math> -mers for the first stage, and an average-case loglinear in the number of common <math><mi>k</mi></math> -mers for the second stage (several orders of magnitudes smaller than the total <math><mi>k</mi></math> -mer spectrum). The space complexity is linear in the first phase (disk-based), and on average linear in the second phase (disk- and memory-based). Tests performed on genomes for different organisms (including viruses, bacteria and animal chromosomes) show that run times are consistent with our theoretical estimates; further, comparisons with MUMmer4 show an asymptotic advantage with divergent genomes.</p>\",\"PeriodicalId\":73284,\"journal\":{\"name\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"volume\":\"2024 \",\"pages\":\"93-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412151/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ichi61247.2024.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ichi61247.2024.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
两个文本之间最长公共子串(LCS)问题的扩展是枚举给定最小长度 k 的所有 LCS(ALCS- k)以及它们在每个文本中的位置。在生物信息学中,针对超长文本--基因组或元基因组--的 ALCS- k 的有效解决方案可以为发现生物机制的遗传特征提供有用的见解。与 LCS 问题相比,ALCS- k 问题有两个额外的要求:一个是最小长度 k,另一个是必须报告所有长于 k 的普通字符串。我们提出了一种高效的两阶段 ALCS- k 算法,该算法利用了长度为 k 的文本子串谱(k -mers)。我们的方法在最坏情况下,第一阶段的时间复杂度与 k -mers 的数量成对数线性关系,在平均情况下,第二阶段的时间复杂度与常见 k -mers 的数量成对数线性关系(比总 k -mers 频谱小几个数量级)。空间复杂度在第一阶段(基于磁盘)是线性的,在第二阶段(基于磁盘和内存)平均是线性的。在不同生物体(包括病毒、细菌和动物染色体)基因组上进行的测试表明,运行时间与我们的理论估计值一致;此外,与 MUMmer4 的比较显示,在不同基因组上具有渐进优势。
An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length k between genome pairs.
A problem extension of the longest common substring (LCS) between two texts is the enumeration of all LCSs given a minimum length (ALCS- ), along with their positions in each text. In bioinformatics, an efficient solution to the ALCS- for very long texts -genomes or metagenomes- can provide useful insights to discover genetic signatures responsible for biological mechanisms. The ALCS- problem has two additional requirements compared to the LCS problem: one is the minimum length , and the other is that all common strings longer than must be reported. We present an efficient, two-stage ALCS- algorithm exploiting the spectrum of text substrings of length ( -mers). Our approach yields a worst-case time complexity loglinear in the number of -mers for the first stage, and an average-case loglinear in the number of common -mers for the second stage (several orders of magnitudes smaller than the total -mer spectrum). The space complexity is linear in the first phase (disk-based), and on average linear in the second phase (disk- and memory-based). Tests performed on genomes for different organisms (including viruses, bacteria and animal chromosomes) show that run times are consistent with our theoretical estimates; further, comparisons with MUMmer4 show an asymptotic advantage with divergent genomes.