Shawn M Lamothe, Damayantee Das, Anson A Wong, Yubin Hao, Aislinn D Maguire, Bradley J Kerr, Victoria A Baronas, Harley T Kurata
{"title":"Regulation of Kv1.2 Redox-Sensitive Gating by the Transmembrane Lectin LMAN2.","authors":"Shawn M Lamothe, Damayantee Das, Anson A Wong, Yubin Hao, Aislinn D Maguire, Bradley J Kerr, Victoria A Baronas, Harley T Kurata","doi":"10.1093/function/zqae041","DOIUrl":"10.1093/function/zqae041","url":null,"abstract":"<p><p>Voltage gated potassium (Kv)1.2 channels influence excitability and action potential propagation in the nervous system. Unlike closely related Kv1 channels, Kv1.2 exhibits highly variable voltage-dependence of gating, attributed to regulation by unidentified extrinsic factors. Variability of Kv1.2 gating is strongly influenced by the extracellular redox potential, and we demonstrate that Kv1.2 currents in dorsal root ganglion sensory neurons exhibit similar variability and redox sensitivity as observed when the channel is heterologously expressed in cell lines. We used a functional screening approach to test the effects of candidate regulatory proteins on Kv1.2 gating, using patch clamp electrophysiology. Among 52 candidate genes tested, we observed that co-expression with the transmembrane lectin LMAN2 led to a pronounced gating shift of Kv1.2 activation to depolarized voltages in CHO and L(tk-) cell lines, accompanied by deceleration of activation kinetics. Overexpression of LMAN2 promoted a slow gating mode of Kv1.2 that mimics the functional outcomes of extracellular reducing conditions, and enhanced sensitivity to extracellular reducing agents. In contrast, shRNA-mediated knockdown of endogenous LMAN2 in cell lines reduced Kv1.2 redox sensitivity and gating variability. Kv1.2 sensitivity to LMAN2 is abolished by mutation of neighboring residues F251 and T252 in the intracellular S2-S3 linker, and these also abolish redox-dependent gating changes, suggesting that LMAN2 influences the same pathway as redox for Kv1.2 modulation. In conclusion, we identified LMAN2 as a candidate regulatory protein that influences redox-dependent modulation of Kv1.2, and clarified the structural elements of the channel that are required for sensitivity.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liam S Fitzgerald, Shannon N Bremner, Samuel R Ward, Yoshitake Cho, Simon Schenk
{"title":"Intrinsic Skeletal Muscle Function and Contraction-Stimulated Glucose Uptake Do Not Vary by Time-of-Day in Mice.","authors":"Liam S Fitzgerald, Shannon N Bremner, Samuel R Ward, Yoshitake Cho, Simon Schenk","doi":"10.1093/function/zqae035","DOIUrl":"10.1093/function/zqae035","url":null,"abstract":"<p><p>A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from mice at 4 times-of-day (zeitgeber times 1, 7, 13, 19). Significantly, though both muscles demonstrated circadian-related changes in gene expression, there were no differences between the 4 time points in intrinsic contractile function, endurance, and contraction-stimulated glucose uptake, regardless of sex. Overall, these results suggest that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Malaria and Hypertension: What Is the Direction of Association?","authors":"Aparna Tiwari, Auley De, Abhinav Sinha","doi":"10.1093/function/zqae037","DOIUrl":"10.1093/function/zqae037","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Milene T Fontes, Tiago J Costa, Ricardo B de Paula, Fênix A Araújo, Paula R Barros, Paul Townsend, Landon Butler, Kandy T Velazquez, Fiona Hollis, Gisele F Bomfim, Joshua T Butcher, Cameron G McCarthy, Camilla F Wenceslau
{"title":"A Skeletal Muscle-Mediated Anticontractile Response on Vascular Tone: Unraveling the Lactate-AMPK-NOS1 Pathway in Femoral Arteries.","authors":"Milene T Fontes, Tiago J Costa, Ricardo B de Paula, Fênix A Araújo, Paula R Barros, Paul Townsend, Landon Butler, Kandy T Velazquez, Fiona Hollis, Gisele F Bomfim, Joshua T Butcher, Cameron G McCarthy, Camilla F Wenceslau","doi":"10.1093/function/zqae042","DOIUrl":"10.1093/function/zqae042","url":null,"abstract":"<p><p>The regulation of vascular tone by perivascular tissues is a complex interplay of various paracrine factors. Here, we investigate the anti-contractile effect of skeletal muscle surrounding the femoral and carotid arteries and its underlying mechanisms. Using male and female Wistar rats, we demonstrated that serotonin, phenylephrine, and U-46619 induced a concentration-dependent vasoconstrictor response in femoral artery rings. Interestingly, this response was diminished in the presence of surrounding femoral skeletal muscle, irrespective of sex. No anti-contractile effect was observed when the carotid artery was exposed to its surrounding skeletal muscle. The observed effect in the femoral artery persisted even in the absence of endothelium and when the muscle was detached from the artery. Furthermore, the skeletal muscle surrounding the femoral artery was able to promote an anti-contractile effect in three other vascular beds (basilar, mesenteric, and carotid arteries). Using inhibitors of lactate dehydrogenase and the 1/4 monocarboxylate transporter, we confirmed the involvement of lactate, as both inhibitors were able to abolish the anti-contractile effect. However, lactate did not directly promote vasodilation; rather, it exerted its effect by activating 5' AMP-activated protein kinase (AMPK) and neuronal nitric oxide synthase (NOS1) in the skeletal muscle. Accordingly, Nω-propyl l-arginine, a specific inhibitor of NOS1, prevented the anti-contractile effect, as well as lactate-induced phosphorylation of NOS1 at the stimulatory serine site (1417) in primary skeletal muscle cells. Phosphorylation of NOS1 was reduced in the presence of Bay-3827, a selective AMPK inhibitor. In conclusion, femoral artery-associated skeletal muscle is a potent paracrine and endocrine organ that influences vascular tone in both sexes. Mechanistically, the anti-contractile effect involves muscle fiber type and/or its anatomical location but not the type of artery or its related vascular endothelium. Finally, the femoral artery anti-contractile effect is mediated by the lactate-AMPK-phospho-NOS1Ser1417-NO signaling axis.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jillian G Baker, Erica K Sloan, Kevin Pfleger, Peter J McCormick, Cristina Salmerón, Paul A Insel
{"title":"Pancreatic ductal adenocarcinoma, β-blockers and antihistamines: A clinical trial is needed.","authors":"Jillian G Baker, Erica K Sloan, Kevin Pfleger, Peter J McCormick, Cristina Salmerón, Paul A Insel","doi":"10.1093/function/zqae050","DOIUrl":"https://doi.org/10.1093/function/zqae050","url":null,"abstract":"<p><p>Survival in pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) at just 5 months is the worst of all cancers. It is predicted to become the second highest cause of cancer deaths worldwide this decade and unlike most cancers, there has been little progress in improving survival in PDAC. Numerous studies including molecular and mechanistic studies, cancer biology studies and retrospective human epidemiological studies suggest that two well-known, approved drug classes - β-blockers and H1-antihistamines - may be beneficial and thus may potentially prolong life in patients with PDAC. In our opinion, the body of evidence has reached a point where the potential gains outweigh the very low risks involved in a clinical study in PDAC. We thus believe that it is now time for a clinical trial involving these two agents in PDAC patients. As a repurposing of generic drugs, this is not likely to be appealing to pharmaceutical companies and therefore is likely to require governmental, philanthropic and /or charitable organisational input. In this article, we opine and propose that an urgent clinical trial is needed to determine if repurposing these two orally administered, inexpensive, largely safe drug classes, either alone or in combination, could prolong survival in PDAC and thus improve the outcome for the 10,000 people worldwide who die from PDAC each week.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Response of the nephron arterial network and its interactions to acute hypertension: a simulation.","authors":"Donald J Marsh, Niels-Henrik Holstein-Rathlou","doi":"10.1093/function/zqae049","DOIUrl":"https://doi.org/10.1093/function/zqae049","url":null,"abstract":"<p><p>We simulated the dynamics of a group of 10 nephrons supplied from an arterial network and subjected to acute increases in blood pressure. Arterial lengths and topology were based on measurements of a vascular cast. The model builds on a previous version exercised at a single blood pressure with 2 additional features: pressure diuresis and the effect of blood pressure on efferent arteriolar vascular resistance. The new version simulates autoregulation, and reproduces tubule pressure oscillations. Individual nephron dynamics depended on mean arterial pressure and the axial pressure gradient required to cause blood flow through the arteries. Rhythmic blood withdrawal into afferent arterioles caused blood flow fluctuations in downstream vessels. Blood pressure dependent changes in nephron dynamics affected synchronization metrics. The combination of vascular pressure gradients and oscillations created a range of arterial pressures at the origins of the 10 afferent arterioles. Because arterial blood pressure in conscious animals has 1/f dynamics, we applied an arterial pressure pattern with such dynamics to the model. Amplitude of tubule pressure oscillations were affected by the 1/f blood pressure fluctuations, but the oscillation frequencies did not change. The pressure gradients required to deliver blood to all afferent arterioles impose a complexity that affects nephrons according to their locations in the network, but other interactions compensate to ensure the stability of the system. The sensitivity of nephron response to location on the network, and the constancy of the tubular oscillation frequency provide a spatial and time context.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karla L Otterpohl, Brook W Busselman, Jenna L Zimmerman, Malini Mukherjee, Claire Evans, Kelly Graber, Vedant P Thakkar, Jermaine G Johnston, Arooba Ilyas, Michelle L Gumz, Douglas C Eaton, Jeff M Sands, Kameswaran Surendran, Indra Chandrasekar
{"title":"Thick Ascending Limb Specific Inactivation of Myh9 and Myh10 Myosin Motors Results in Progressive Kidney Disease and Drives Sex-specific Cellular Adaptation in the Distal Nephron and Collecting Duct.","authors":"Karla L Otterpohl, Brook W Busselman, Jenna L Zimmerman, Malini Mukherjee, Claire Evans, Kelly Graber, Vedant P Thakkar, Jermaine G Johnston, Arooba Ilyas, Michelle L Gumz, Douglas C Eaton, Jeff M Sands, Kameswaran Surendran, Indra Chandrasekar","doi":"10.1093/function/zqae048","DOIUrl":"10.1093/function/zqae048","url":null,"abstract":"<p><p>Our previous work established a role for actin associated myosin motor proteins MYH9 and MYH10 in the trafficking of thick ascending limb (TAL) specific cargoes, uromodulin (UMOD) and Na + K + 2Cl- cotransporter (NKCC2). Here, we have generated a TAL-specific Myh9&10 conditional knockout (Myh9&10 TAL-cKO) mouse model to determine the cell autonomous roles for MYH9&10 proteins in TAL cargo transport and to understand the consequence of TAL dysfunction in the adult kidney. Myh9&10 TAL-cKO mice develop progressive kidney disease with pathological tubular injury confirmed by histological changes, tubular injury markers, upregulation of ER stress/unfolded protein response pathway, and higher blood urea nitrogen and serum creatinine. However, male mice survive twice as long as female mice. We determined that the sexual dimorphism in morbidity is due to adaptation of the distal nephron and the collecting ducts in response to TAL dysfunction and significantly lower NKCC2 expression. We demonstrate that this triggers a compensatory mechanism involving sex-specific cellular adaptation within the distal tubules and collecting ducts to boost sodium reabsorption. While both sexes overcompensate by activating ENaC expression in the medullary collecting ducts resulting in hypernatremia, this is subdued in male Myh9&10 TAL-cKO mice as they initially promote higher sodium chloride cotransporter (NCC) expression within the distal nephron. Our results indicate that compromised TAL function results in maladaptation of medullary collecting duct cells, which acquire cortical-like properties, including ENaC expression. This work further confirms a cell autonomous role for myosin motor proteins MYH9&10 in the maintenance of NKCC2 expression in the TAL and uncover adaptive mechanisms of the distal nephron and the collecting duct segments in response to TAL dysfunction.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ga-Yeon Son, Anna Zou, Amanda Wahl, Kai Ting Huang, Saruul Zorgit, Manikandan Vinu, Fang Zhou, Larry Wagner, Youssef Idaghdour, David I Yule, Stefan Feske, Rodrigo S Lacruz
{"title":"Loss of STIM1 and STIM2 in salivary glands disrupts ANO1 function but does not induce Sjogren's disease.","authors":"Ga-Yeon Son, Anna Zou, Amanda Wahl, Kai Ting Huang, Saruul Zorgit, Manikandan Vinu, Fang Zhou, Larry Wagner, Youssef Idaghdour, David I Yule, Stefan Feske, Rodrigo S Lacruz","doi":"10.1093/function/zqae047","DOIUrl":"10.1093/function/zqae047","url":null,"abstract":"<p><p>Ca2+ signaling via the store operated Ca2+ entry (SOCE) mediated by STIM1 and STIM2 proteins and the ORAI1 Ca2+ channel is important in saliva fluid secretion and has been associated with Sjogren's disease (SjD). However, there are no studies addressing STIM1/2 dysfunction in salivary glands or SjD in animal models. We report that mice lacking Stim1 and Stim2 (Stim1/2K14Cre(+)) in salivary glands exhibited reduced Ca2+ levels and hyposalivate. SOCE was functionally required for the activation of the Ca2+ activated Cl- channel ANO1. Ageing Stim1/2K14Cre(+) mice showed no evidence of lymphocytic infiltration or increased levels of autoantibodies characteristic of SjD, possibly associated with a downregulation of toll-like receptor 8 (Tlr8) expression. Salivary gland biopsies of SjD patients showed increased expression of STIM1 and TLR7/8. Our study shows that SOCE activates ANO1 function and fluid secretion in salivary glands and highlights a potential link between SOCE and TLR signaling in SjD.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hae Jin Kim, Charles E Norton, Scott D Zawieja, Jorge A Castorena-Gonzalez, Michael J Davis
{"title":"Acute Metabolic Stress Induces Lymphatic Dysfunction Through KATP Channel Activation.","authors":"Hae Jin Kim, Charles E Norton, Scott D Zawieja, Jorge A Castorena-Gonzalez, Michael J Davis","doi":"10.1093/function/zqae033","DOIUrl":"10.1093/function/zqae033","url":null,"abstract":"<p><p>Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP. Each inhibitor led to a significant reduction in the frequency of spontaneous lymphatic contractions and calculated pump flow, without a significant change in contraction amplitude. Contraction frequency was restored by the KATP channel inhibitor, glibenclamide. Lymphatic vessels from mice with global Kir6.1 deficiency or expressing a smooth muscle-specific dominant negative Kir6.1 channel were resistant to inhibition. Antimycin A inhibited the spontaneous action potentials generated in lymphatic muscle and this effect was reversed by glibenclamide, confirming the role of KATP channels. Antimycin A, but not rotenone or CCCP, increased dihydrorhodamine fluorescence in lymphatic muscle, indicating ROS production. Pretreatment with tiron or catalase prevented the effect of antimycin A on wild-type lymphatic vessels, consistent with its action being mediated by ROS. Our results support the conclusion that KATP channels in lymphatic muscle can be directly activated by reduced mitochondrial ATP production or ROS generation, consequent to acute metabolic stress, leading to contractile dysfunction through inhibition of the ionic pacemaker controlling spontaneous lymphatic contractions. We propose that a similar activation of KATP channels contributes to lymphatic dysfunction in metabolic disease.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}