Function (Oxford, England)最新文献

筛选
英文 中文
Sphingosine-1-Phosphate Receptor 2 Promotes Renal Microvascular Constriction and Kidney Injury Following Renal Ischemia-Reperfusion in Rats. 鞘氨醇-1-磷酸受体2促进大鼠肾缺血再灌注后肾微血管收缩和肾损伤。
IF 5.1
Function (Oxford, England) Pub Date : 2025-06-19 DOI: 10.1093/function/zqaf024
Zhengrong Guan, Colton E Remedies, Yanfeng Zhang, Paul W Sanders, Edward W Inscho, Wenguang Feng
{"title":"Sphingosine-1-Phosphate Receptor 2 Promotes Renal Microvascular Constriction and Kidney Injury Following Renal Ischemia-Reperfusion in Rats.","authors":"Zhengrong Guan, Colton E Remedies, Yanfeng Zhang, Paul W Sanders, Edward W Inscho, Wenguang Feng","doi":"10.1093/function/zqaf024","DOIUrl":"10.1093/function/zqaf024","url":null,"abstract":"<p><p>Ischemia-reperfusion (IR) induced acute kidney injury (AKI) features increased renal vascular resistance, which is predominantly regulated by adjustments in afferent arteriolar diameter. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, is a potent vasoconstrictor in afferent arterioles. We hypothesized that IR enhanced afferent arteriolar sensitivity to S1P-induced vasoconstriction, thus contributing to renal microvascular dysfunction and kidney injury in AKI. The impact of IR on afferent arteriolar reactivity to S1P was assessed using the in vitro blood-perfused juxtamedullary nephron preparation in male rats subjected to 60 min of bilateral renal arterial ischemia followed by 24 h of reperfusion. Baseline diameter of afferent arterioles declined significantly following IR. S1P evoked concentration-dependent vasoconstriction in both sham and IR rats. However, the S1P concentration-response curve left-shifted after IR and its EC50 reduced by 8-fold (P < 0.05), suggesting enhanced afferent arteriolar reactivity to S1P. S1P receptor 2 (S1PR2) blockade with JTE-013 increased arteriolar diameter by 38 ± 7% following IR contrasted to a 9 ± 3% increase in sham rats (P < 0.05), indicating that endogenous S1P exerts a significant impact on afferent arteriolar tone after IR. Furthermore, IR upregulated mRNA and protein of S1PR2 in isolated preglomerular microvessels and elevated S1P content in kidney homogenates. Conversely, following IR, vasoresponsiveness to S1PR1 agonist, sphingosine, endothelin-1, norepinephrine, and angiotensin II did not differ from sham controls. JTE-013 treatment reduced plasma creatinine, tubular damage, and kidney ROS accumulation in IR rats. These data establish that IR enhances renal microvascular S1P-S1PR2 signaling and promotes kidney sphingolipid metabolites that could negatively affect kidney tissue perfusion, leading to AKI.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144251169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wheat-based protein slows disease progression in Pkd1 knockout mice. 小麦蛋白减缓Pkd1敲除小鼠的疾病进展。
IF 5.1
Function (Oxford, England) Pub Date : 2025-06-10 DOI: 10.1093/function/zqaf026
Randee Sedaka, Jifeng Huang, Shinobu Yamaguchi, Emily Hallit, Aida Moran-Reyna, Jung- Shan Hsu, Caleb Lovelady, Ayaka Fujihashi, Mohammad Sako, Malgorzata Kasztan, Gloria Benavides, Landon Wilson, Victor Darley-Usmar, Stephen Barnes, Takamitsu Saigusa
{"title":"Wheat-based protein slows disease progression in Pkd1 knockout mice.","authors":"Randee Sedaka, Jifeng Huang, Shinobu Yamaguchi, Emily Hallit, Aida Moran-Reyna, Jung- Shan Hsu, Caleb Lovelady, Ayaka Fujihashi, Mohammad Sako, Malgorzata Kasztan, Gloria Benavides, Landon Wilson, Victor Darley-Usmar, Stephen Barnes, Takamitsu Saigusa","doi":"10.1093/function/zqaf026","DOIUrl":"https://doi.org/10.1093/function/zqaf026","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144268033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proton-Secreting Cells as Drivers of Inflammation and Sperm Dysfunction in LPS-Induced Epididymitis. 在lps诱导的附睾炎中,质子分泌细胞是炎症和精子功能障碍的驱动因素。
IF 5.1
Function (Oxford, England) Pub Date : 2025-05-19 DOI: 10.1093/function/zqaf023
A A S Da Silva, F Barrachina, M C Avenatti, M L Elizagaray, I Bastepe, E Sasso-Cerri, M A Battistone
{"title":"Proton-Secreting Cells as Drivers of Inflammation and Sperm Dysfunction in LPS-Induced Epididymitis.","authors":"A A S Da Silva, F Barrachina, M C Avenatti, M L Elizagaray, I Bastepe, E Sasso-Cerri, M A Battistone","doi":"10.1093/function/zqaf023","DOIUrl":"10.1093/function/zqaf023","url":null,"abstract":"<p><p>Proton-secreting cells in various organs, such as the kidney and epididymis, regulate pH balance, maintain cellular homeostasis, and support key physiological processes. More recently, these specialized cells have emerged as key contributors to mucosal immunity, orchestrating immune activation. Epididymitis is an inflammatory condition that significantly impacts male fertility, often due to a lack of diagnosis and treatment. This study investigates the role of region-specific epididymal proton-secreting clear cells (CCs) in shaping immune responses during LPS-induced epididymitis in mice. We found that in response to lipopolysaccharide (LPS), CCs rapidly shifted to a proinflammatory phenotype, marked by the upregulation of cytokines and chemokines, alongside the downregulation of genes involved in sperm maturation. Morphological changes in CCs, including increased apical blebs and altered shape across different epididymal segments, suggest their active role in immune responses. Moreover, mononuclear phagocytes reduced their luminal-reaching projections in the proximal epididymis after the LPS challenge. This bacterial antigen triggered dendritic cell migration and neutrophil infiltration in the distal epididymis. These immune landscape alterations contributed to epithelial damage and impaired sperm maturation, as evidenced by decreased sperm motility following LPS intravasal-epididymal injection. Our findings indicate that proton-secreting cells are immune gatekeepers in the epididymis, initiating immune responses and disrupting sperm maturation. This research enhances the understanding of epithelial immunoregulation and will help to develop novel diagnostic and therapeutic strategies for epididymitis and male infertility. Furthermore, insights into CC-mediated immune responses could inform the development of new approaches for male contraception.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144210408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of the Carotid Body by Kappa Opioid Receptors Mitigates Fentanyl-Induced Respiratory Depression. kappa阿片受体激活颈动脉体减轻芬太尼诱导的呼吸抑制。
IF 5.1
Function (Oxford, England) Pub Date : 2025-05-19 DOI: 10.1093/function/zqaf020
Ying-Jie Peng, Jayasri Nanduri, Ning Wang, Zheng Xie, Aaron P Fox, Nanduri R Prabhakar
{"title":"Activation of the Carotid Body by Kappa Opioid Receptors Mitigates Fentanyl-Induced Respiratory Depression.","authors":"Ying-Jie Peng, Jayasri Nanduri, Ning Wang, Zheng Xie, Aaron P Fox, Nanduri R Prabhakar","doi":"10.1093/function/zqaf020","DOIUrl":"10.1093/function/zqaf020","url":null,"abstract":"<p><p>Previous studies reported that opioids depress breathing by inhibiting respiratory neural networks in the brainstem. The effects of opioids on sensory inputs regulating breathing are less studied. This study examined the effects of fentanyl and sufentanil on carotid body neural activity, a crucial sensory regulator of breathing. Both opioids stimulated carotid body afferent nerve activity and increased glomus cell [Ca2+]i levels. RNA sequencing and immunohistochemistry revealed a high abundance of κ opioid receptors (KORs) in carotid bodies, but no µ or δ opioid receptors. A KOR agonist, like fentanyl, stimulated carotid body afferents, while a KOR antagonist blocked carotid body activation by fentanyl and KOR agonist. In unanesthetized rats, fentanyl initially stimulated breathing, followed by respiratory depression. A KOR agonist stimulated breathing without respiratory inhibition, and this effect was absent in carotid body-denervated rats. Combining fentanyl with a KOR agonist attenuated respiratory depression in rats with intact carotid body but not in carotid body-denervated rats. These findings highlight previously uncharacterized activation of carotid body afferents by fentanyl via KORs as opposed to depression of brainstem respiratory neurons by µ opioid receptors and suggest that KOR agonists might counteract the central depressive effects of opioids on breathing.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117331/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144082540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moving Beyond Barker's Hypothesis Towards New Therapies for the Treatment of Fetal Growth Restriction. 超越巴克的假设,寻找治疗胎儿生长受限的新疗法。
IF 5.1
Function (Oxford, England) Pub Date : 2025-05-19 DOI: 10.1093/function/zqaf022
Laura E Coats, Barbara T Alexander
{"title":"Moving Beyond Barker's Hypothesis Towards New Therapies for the Treatment of Fetal Growth Restriction.","authors":"Laura E Coats, Barbara T Alexander","doi":"10.1093/function/zqaf022","DOIUrl":"10.1093/function/zqaf022","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12152473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144182293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerobic Capacity and Exercise Mediate Protection Against Hepatic Steatosis via Enhanced Bile Acid Metabolism. 有氧能力和运动通过增强胆汁酸代谢介导对肝脂肪变性的保护。
IF 5.1
Function (Oxford, England) Pub Date : 2025-05-19 DOI: 10.1093/function/zqaf019
Benjamin A Kugler, Adrianna Maurer, Xiaorong Fu, Edziu Franczak, Nick Ernst, Kevin Schwartze, Julie Allen, Tiangang Li, Peter A Crawford, Lauren G Koch, Steven L Britton, Kartik Shankar, Shawn C Burgess, John P Thyfault
{"title":"Aerobic Capacity and Exercise Mediate Protection Against Hepatic Steatosis via Enhanced Bile Acid Metabolism.","authors":"Benjamin A Kugler, Adrianna Maurer, Xiaorong Fu, Edziu Franczak, Nick Ernst, Kevin Schwartze, Julie Allen, Tiangang Li, Peter A Crawford, Lauren G Koch, Steven L Britton, Kartik Shankar, Shawn C Burgess, John P Thyfault","doi":"10.1093/function/zqaf019","DOIUrl":"10.1093/function/zqaf019","url":null,"abstract":"<p><p>High cardiorespiratory fitness and exercise show evidence of altering bile acid (BA) metabolism and are known to protect or treat diet-induced hepatic steatosis, respectively. Here, we tested the hypothesis that high intrinsic aerobic capacity and exercise both increase hepatic BA synthesis measured by the incorporation of 2H2O. We also leveraged mice with inducible liver-specific deletion of Cyp7a1 (LCyp7a1KO), which encodes the rate-limiting enzyme for BA synthesis, to test if exercise-induced BA synthesis is critical for exercise to reduce hepatic steatosis. The synthesis of hepatic BA, cholesterol, and de novo lipogenesis was measured in rats bred for either high (HCR) or low (LCR) aerobic capacity consuming acute and chronic high-fat diets. HCR rats had increased synthesis of cholesterol and certain BA species in the liver compared to LCR rats. We also found that chronic exercise with voluntary wheel running (VWR) (4 weeks) increased newly synthesized BAs of specific species in male C57BL/6J mice compared to sedentary mice. Loss of Cyp7a1 resulted in fewer new BAs and increased liver triglycerides compared to controls after a 10-week high-fat diet. Additionally, exercise via VWR for 4 weeks effectively reduced hepatic triglycerides in the high-fat diet-fed control male and female mice as expected; however, exercise in LCyp7a1KO mice did not lower liver triglycerides in either sex. These results show that aerobic capacity and exercise increase hepatic BA metabolism, which may be critical for combatting hepatic steatosis.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143804996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Science Is at a Crossroads-and Physiology With It: A Statement from the APS Chief Executive Officer. 科学和生理学正处于十字路口:美国科学学会首席执行官的声明。
IF 5.1
Function (Oxford, England) Pub Date : 2025-05-19 DOI: 10.1093/function/zqaf025
Scott Steen
{"title":"Science Is at a Crossroads-and Physiology With It: A Statement from the APS Chief Executive Officer.","authors":"Scott Steen","doi":"10.1093/function/zqaf025","DOIUrl":"10.1093/function/zqaf025","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144259531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Perspective on "Signal Transduction Pathway Mediating Carotid Body Dependent Sympathetic Activation and Hypertension by Chronic Intermittent Hypoxia". 关于 "介导颈动脉体依赖性交感神经激活和慢性间歇性缺氧引起的高血压的信号转导途径 "的观点。
IF 5.1
Function (Oxford, England) Pub Date : 2025-03-24 DOI: 10.1093/function/zqaf012
Gary C Sieck
{"title":"A Perspective on \"Signal Transduction Pathway Mediating Carotid Body Dependent Sympathetic Activation and Hypertension by Chronic Intermittent Hypoxia\".","authors":"Gary C Sieck","doi":"10.1093/function/zqaf012","DOIUrl":"10.1093/function/zqaf012","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KATP Channels as Target for Remodeling Connectivity in Type 2 Diabetes. KATP 通道是重塑 2 型糖尿病患者连接性的目标。
IF 5.1
Function (Oxford, England) Pub Date : 2025-03-24 DOI: 10.1093/function/zqaf013
Fei Kang, Herbert Y Gaisano
{"title":"KATP Channels as Target for Remodeling Connectivity in Type 2 Diabetes.","authors":"Fei Kang, Herbert Y Gaisano","doi":"10.1093/function/zqaf013","DOIUrl":"10.1093/function/zqaf013","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response of the Nephron Arterial Network and Its Interactions to Acute Hypertension: A Simulation. 肾动脉网络及其相互作用对急性高血压的反应:模拟。
IF 5.1
Function (Oxford, England) Pub Date : 2025-03-24 DOI: 10.1093/function/zqae049
Donald J Marsh, Niels-Henrik Holstein-Rathlou
{"title":"Response of the Nephron Arterial Network and Its Interactions to Acute Hypertension: A Simulation.","authors":"Donald J Marsh, Niels-Henrik Holstein-Rathlou","doi":"10.1093/function/zqae049","DOIUrl":"10.1093/function/zqae049","url":null,"abstract":"<p><p>We simulated the dynamics of a group of 10 nephrons supplied from an arterial network and subjected to acute increases in blood pressure. Arterial lengths and topology were based on measurements of a vascular cast. The model builds on a previous version exercised at a single blood pressure with 2 additional features: pressure diuresis and the effect of blood pressure on efferent arteriolar vascular resistance. The new version simulates autoregulation, and reproduces tubule pressure oscillations. Individual nephron dynamics depended on mean arterial pressure and the axial pressure gradient required to cause blood flow through the arteries. Rhythmic blood withdrawal into afferent arterioles caused blood flow fluctuations in downstream vessels. Blood pressure dependent changes in nephron dynamics affected synchronization metrics. The combination of vascular pressure gradients and oscillations created a range of arterial pressures at the origins of the 10 afferent arterioles. Because arterial blood pressure in conscious animals has ${1}/{f}$ dynamics, we applied an arterial pressure pattern with such dynamics to the model. Amplitude of tubule pressure oscillations were affected by the ${1}/{f}$ blood pressure fluctuations, but the oscillation frequencies did not change. The pressure gradients required to deliver blood to all afferent arterioles impose a complexity that affects nephrons according to their locations in the network, but other interactions compensate to ensure the stability of the system. The sensitivity of nephron response to location on the network, and the constancy of the tubular oscillation frequency provide a spatial and time context.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信