有氧能力和运动通过增强胆汁酸代谢介导对肝脂肪变性的保护。

IF 5.1 Q2 CELL BIOLOGY
Benjamin A Kugler, Adrianna Maurer, Xiaorong Fu, Edziu Franczak, Nick Ernst, Kevin Schwartze, Julie Allen, Tiangang Li, Peter A Crawford, Lauren G Koch, Steven L Britton, Kartik Shankar, Shawn C Burgess, John P Thyfault
{"title":"有氧能力和运动通过增强胆汁酸代谢介导对肝脂肪变性的保护。","authors":"Benjamin A Kugler, Adrianna Maurer, Xiaorong Fu, Edziu Franczak, Nick Ernst, Kevin Schwartze, Julie Allen, Tiangang Li, Peter A Crawford, Lauren G Koch, Steven L Britton, Kartik Shankar, Shawn C Burgess, John P Thyfault","doi":"10.1093/function/zqaf019","DOIUrl":null,"url":null,"abstract":"<p><p>High cardiorespiratory fitness and exercise show evidence of altering bile acid (BA) metabolism and are known to protect or treat diet-induced hepatic steatosis, respectively. Here, we tested the hypothesis that high intrinsic aerobic capacity and exercise both increase hepatic BA synthesis measured by the incorporation of 2H2O. We also leveraged mice with inducible liver-specific deletion of Cyp7a1 (LCyp7a1KO), which encodes the rate-limiting enzyme for BA synthesis, to test if exercise-induced BA synthesis is critical for exercise to reduce hepatic steatosis. The synthesis of hepatic BA, cholesterol, and de novo lipogenesis was measured in rats bred for either high (HCR) vs. low (LCR) aerobic capacity consuming acute and chronic high-fat diets. HCR rats had increased synthesis of cholesterol and certain BA species in the liver compared to LCR rats. We also found that chronic exercise with voluntary wheel running (VWR) (4 weeks) increased newly synthesized BAs of specific species in male C57BL/6 J mice compared to sedentary mice. Loss of Cyp7a1 resulted in fewer new BAs and increased liver triglycerides compared to controls after a 10-week high-fat diet. Additionally, exercise via VWR for 4 weeks effectively reduced hepatic triglycerides in the high-fat diet-fed control male and female mice as expected; however, exercise in LCyp7a1KO mice did not lower liver triglycerides in either sex. These results show that aerobic capacity and exercise increase hepatic BA metabolism, which may be critical for combatting hepatic steatosis.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerobic capacity and exercise mediate protection against hepatic steatosis via enhanced bile acid metabolism.\",\"authors\":\"Benjamin A Kugler, Adrianna Maurer, Xiaorong Fu, Edziu Franczak, Nick Ernst, Kevin Schwartze, Julie Allen, Tiangang Li, Peter A Crawford, Lauren G Koch, Steven L Britton, Kartik Shankar, Shawn C Burgess, John P Thyfault\",\"doi\":\"10.1093/function/zqaf019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High cardiorespiratory fitness and exercise show evidence of altering bile acid (BA) metabolism and are known to protect or treat diet-induced hepatic steatosis, respectively. Here, we tested the hypothesis that high intrinsic aerobic capacity and exercise both increase hepatic BA synthesis measured by the incorporation of 2H2O. We also leveraged mice with inducible liver-specific deletion of Cyp7a1 (LCyp7a1KO), which encodes the rate-limiting enzyme for BA synthesis, to test if exercise-induced BA synthesis is critical for exercise to reduce hepatic steatosis. The synthesis of hepatic BA, cholesterol, and de novo lipogenesis was measured in rats bred for either high (HCR) vs. low (LCR) aerobic capacity consuming acute and chronic high-fat diets. HCR rats had increased synthesis of cholesterol and certain BA species in the liver compared to LCR rats. We also found that chronic exercise with voluntary wheel running (VWR) (4 weeks) increased newly synthesized BAs of specific species in male C57BL/6 J mice compared to sedentary mice. Loss of Cyp7a1 resulted in fewer new BAs and increased liver triglycerides compared to controls after a 10-week high-fat diet. Additionally, exercise via VWR for 4 weeks effectively reduced hepatic triglycerides in the high-fat diet-fed control male and female mice as expected; however, exercise in LCyp7a1KO mice did not lower liver triglycerides in either sex. These results show that aerobic capacity and exercise increase hepatic BA metabolism, which may be critical for combatting hepatic steatosis.</p>\",\"PeriodicalId\":73119,\"journal\":{\"name\":\"Function (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Function (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/function/zqaf019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqaf019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高心肺适能和运动显示出改变胆汁酸(BA)代谢的证据,并分别保护或治疗饮食引起的肝脂肪变性。在这里,我们测试了高内在有氧能力和运动都增加肝脏BA合成的假设,通过掺入2H2O来测量。我们还利用小鼠诱导肝脏特异性缺失Cyp7a1 (lyp7a1ko),该基因编码BA合成的限速酶,以测试运动诱导的BA合成是否对运动减少肝脂肪变性至关重要。在高(HCR)和低(LCR)有氧能力饲养的大鼠中,分别摄入急性和慢性高脂肪饮食,测量了肝脏BA的合成、胆固醇和新生脂肪生成。与LCR大鼠相比,HCR大鼠肝脏中胆固醇和某些BA物质的合成增加。我们还发现,与久坐不动的小鼠相比,C57BL/ 6j雄性小鼠慢性运动与自愿轮跑(VWR)(4周)增加了特定物种的新合成BAs。在10周的高脂饮食后,与对照组相比,Cyp7a1的缺失导致新的BAs减少,肝脏甘油三酯增加。此外,通过VWR进行4周的运动可以有效降低高脂肪饮食喂养的对照雄性和雌性小鼠的肝脏甘油三酯,正如预期的那样;然而,lyp7a1ko小鼠的运动并没有降低肝脏甘油三酯。这些结果表明,有氧能力和运动增加了肝脏BA代谢,这可能是对抗肝脂肪变性的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerobic capacity and exercise mediate protection against hepatic steatosis via enhanced bile acid metabolism.

High cardiorespiratory fitness and exercise show evidence of altering bile acid (BA) metabolism and are known to protect or treat diet-induced hepatic steatosis, respectively. Here, we tested the hypothesis that high intrinsic aerobic capacity and exercise both increase hepatic BA synthesis measured by the incorporation of 2H2O. We also leveraged mice with inducible liver-specific deletion of Cyp7a1 (LCyp7a1KO), which encodes the rate-limiting enzyme for BA synthesis, to test if exercise-induced BA synthesis is critical for exercise to reduce hepatic steatosis. The synthesis of hepatic BA, cholesterol, and de novo lipogenesis was measured in rats bred for either high (HCR) vs. low (LCR) aerobic capacity consuming acute and chronic high-fat diets. HCR rats had increased synthesis of cholesterol and certain BA species in the liver compared to LCR rats. We also found that chronic exercise with voluntary wheel running (VWR) (4 weeks) increased newly synthesized BAs of specific species in male C57BL/6 J mice compared to sedentary mice. Loss of Cyp7a1 resulted in fewer new BAs and increased liver triglycerides compared to controls after a 10-week high-fat diet. Additionally, exercise via VWR for 4 weeks effectively reduced hepatic triglycerides in the high-fat diet-fed control male and female mice as expected; however, exercise in LCyp7a1KO mice did not lower liver triglycerides in either sex. These results show that aerobic capacity and exercise increase hepatic BA metabolism, which may be critical for combatting hepatic steatosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信