IF 5.1 Q2 CELL BIOLOGY
Joshua Pickard, Victoria E Sturgess, Katherine McDonald, Nicholas Rossiter, Kelly Arnold, Yatrik M Shah, Indika Rajapakse, Daniel A Beard
{"title":"A Hands-On Introduction to Data Analytics for Biomedical Research.","authors":"Joshua Pickard, Victoria E Sturgess, Katherine McDonald, Nicholas Rossiter, Kelly Arnold, Yatrik M Shah, Indika Rajapakse, Daniel A Beard","doi":"10.1093/function/zqaf015","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) applications are having increasing impacts in the biomedical sciences. Modern AI tools enable uncovering hidden patterns in large datasets, forecasting outcomes, and numerous other applications. Despite the availability and power of these tools, the rapid expansion and complexity of AI applications can be daunting, and there is a conspicuous absence of consensus on their ethical and responsible use. Misapplication of AI can result in invalid, unclear, or biased outcomes, exacerbated by the unfamiliarity of many biomedical researchers with the underlying mathematical and computational principles. To address these challenges, this review and tutorial paper aims to achieve three primary objectives: (1) highlight prevalent data science applications in biomedical research, including data visualization, dimensionality reduction, missing data imputation, and predictive model training and evaluation; (2) provide comprehensible explanations of the mathematical foundations underpinning these methodologies; and (3) guide readers on the effective use and interpretation of software tools for implementing these methods in biomedical contexts. While introductory, this guide covers core principles essential for understanding advanced applications, empowering readers to critically interpret results, assess tools, and explore the potential and limitations of machine learning in their research. Ultimately, this paper serves as a practical foundation for biomedical researchers to confidently navigate the growing intersection of AI and biomedicine.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqaf015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)应用对生物医学科学的影响越来越大。现代人工智能工具能够揭示大型数据集中隐藏的模式、预测结果以及许多其他应用。尽管这些工具可用性强、功能强大,但人工智能应用的快速扩展和复杂性可能令人望而生畏,而且在道德和负责任地使用这些工具方面明显缺乏共识。人工智能的错误应用可能会导致无效、不明确或有偏见的结果,而许多生物医学研究人员对基本数学和计算原理的不熟悉更加剧了这种情况。为了应对这些挑战,这篇综述和教程论文旨在实现三个主要目标:(1) 强调数据科学在生物医学研究中的普遍应用,包括数据可视化、降维、缺失数据估算以及预测模型的训练和评估;(2) 对支撑这些方法的数学基础提供易懂的解释;(3) 指导读者有效使用和解释软件工具,以便在生物医学环境中实施这些方法。本指南虽然是入门级的,但涵盖了理解高级应用所必需的核心原则,使读者有能力批判性地解释结果、评估工具并探索机器学习在其研究中的潜力和局限性。最终,本文将为生物医学研究人员自信地驾驭人工智能与生物医学日益增长的交叉学科奠定实用的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hands-On Introduction to Data Analytics for Biomedical Research.

Artificial intelligence (AI) applications are having increasing impacts in the biomedical sciences. Modern AI tools enable uncovering hidden patterns in large datasets, forecasting outcomes, and numerous other applications. Despite the availability and power of these tools, the rapid expansion and complexity of AI applications can be daunting, and there is a conspicuous absence of consensus on their ethical and responsible use. Misapplication of AI can result in invalid, unclear, or biased outcomes, exacerbated by the unfamiliarity of many biomedical researchers with the underlying mathematical and computational principles. To address these challenges, this review and tutorial paper aims to achieve three primary objectives: (1) highlight prevalent data science applications in biomedical research, including data visualization, dimensionality reduction, missing data imputation, and predictive model training and evaluation; (2) provide comprehensible explanations of the mathematical foundations underpinning these methodologies; and (3) guide readers on the effective use and interpretation of software tools for implementing these methods in biomedical contexts. While introductory, this guide covers core principles essential for understanding advanced applications, empowering readers to critically interpret results, assess tools, and explore the potential and limitations of machine learning in their research. Ultimately, this paper serves as a practical foundation for biomedical researchers to confidently navigate the growing intersection of AI and biomedicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信