Frontiers in soil science最新文献

筛选
英文 中文
Corrigendum: Fellfields of the Kerguelen Islands harbour specific soil microbiomes and rhizomicrobiomes of an endemic plant facing necrosis 勘误:凯尔盖伦群岛的农田有一种特有植物面临坏死的特定土壤微生物群和根状微生物群
Frontiers in soil science Pub Date : 2022-12-05 DOI: 10.3389/fsoil.2022.1101893
L. Marchand, F. Hennion, M. Tarayre, Marie-Claire Martin, Benoit R. Martins, C. Monard
{"title":"Corrigendum: Fellfields of the Kerguelen Islands harbour specific soil microbiomes and rhizomicrobiomes of an endemic plant facing necrosis","authors":"L. Marchand, F. Hennion, M. Tarayre, Marie-Claire Martin, Benoit R. Martins, C. Monard","doi":"10.3389/fsoil.2022.1101893","DOIUrl":"https://doi.org/10.3389/fsoil.2022.1101893","url":null,"abstract":"","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45317962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calla lily production in enrofloxacin-contaminated soil and manure: An attractive alternative coupling income generation with antimicrobial removal from the environment 在恩诺沙星污染的土壤和粪便中生产马蹄莲:一种有吸引力的替代方案,将创收与环境中的抗菌药物去除相结合
Frontiers in soil science Pub Date : 2022-12-02 DOI: 10.3389/fsoil.2022.1060937
C. Rocha, L. Y. Kochi, J. Brito, L. Maranho, D. N. M. Carneiro, Michele Valquíria dos Reis, A. Gauthier, P. Juneau, M. P. Gomes
{"title":"Calla lily production in enrofloxacin-contaminated soil and manure: An attractive alternative coupling income generation with antimicrobial removal from the environment","authors":"C. Rocha, L. Y. Kochi, J. Brito, L. Maranho, D. N. M. Carneiro, Michele Valquíria dos Reis, A. Gauthier, P. Juneau, M. P. Gomes","doi":"10.3389/fsoil.2022.1060937","DOIUrl":"https://doi.org/10.3389/fsoil.2022.1060937","url":null,"abstract":"Enrofloxacin (Enro) is often detected in soil and animal manure used for crop production and phytotoxic responses have been observed in plants grown under antimicrobial presence. In the present paper, we investigated the effects of the presence of Enro in soils (1.9 mg kg-1) and manure (50.4 mg kg-1) in growth and flower production of calla lily plants (Zantedeschia aethiopica). We also reported the accumulation and distribution of Enro between plant tissues aiming to evaluate the safety of commercializing plants produced under Enro-contaminated conditions. The presence of Enro in soils and manure did not affect plant growth and flower production and did not induce any physiological effects in plants (as evaluated by photosynthetic pigment, hydrogen peroxide concentration, superoxide dismutase and catalase activity in leaves). Plants accumulated Enro mainly in their roots, restraining its translocation to shoots, which contributes to the safety of the commercialization of their flowers. However, when commercialized as pots, the amount of Enro carried by plants is a matter of concern, and therefore, selling pot plants must be avoided. Due to their tolerance and capacity to remove Enro (up to 14.76% of Enro from contaminated soil and/or manure), plants are indicated for phytoremediation programs.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44141800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An integrative approach based on crop modeling and geospatial and statistical analysis to quantify and explain the maize (Zea mays) yield gap in Ghana 一种基于作物建模、地理空间和统计分析的综合方法,用于量化和解释加纳玉米产量差距
Frontiers in soil science Pub Date : 2022-11-30 DOI: 10.3389/fsoil.2022.1037222
Mohamed Boullouz, P. Bindraban, Isaac N. Kissiedu, Anselme K. K. Kouame, K. Devkota, W. Atakora
{"title":"An integrative approach based on crop modeling and geospatial and statistical analysis to quantify and explain the maize (Zea mays) yield gap in Ghana","authors":"Mohamed Boullouz, P. Bindraban, Isaac N. Kissiedu, Anselme K. K. Kouame, K. Devkota, W. Atakora","doi":"10.3389/fsoil.2022.1037222","DOIUrl":"https://doi.org/10.3389/fsoil.2022.1037222","url":null,"abstract":"In Ghana, maize (Zea mays) is a crop crucial to achieving food and nutrition security. Maize consumption has increased exponentially over the past decades and contributes to 25% of the caloric consumption in the country. In order to assist in decision-making and guide investment in sustainable intensification of maize production, this study set out to identify the determinants of yield and to arrive at potential interventions for closing the maize yield gap. These were quantified using analytical approaches that combine a light use efficiency crop model (LINTUL-1) with statistical and geospatial analyses. Legacy data, auxiliary covariables, and maize fertilizer trials on eight experimental stations in Ghana were used in this study. Overall, the maize yield gap across the stations and trial treatments ranged from 17% to 98%. The variation in yield gap within a single station indicates a significant scope for closing the yield gap through site-specific nutrient management. Multiple linear regression models that explained 81% of the variability in maize yield gap identified soil organic matter, soil water-holding capacity, root zone depth, rainfall, sulfur fertilizer, and nitrogen fertilizer, in that order of importance, as the major determinants for closing the yield gap in the major agroecological zones of Ghana. The yield gap decreased by 1.4 t ha-1 with a 1% increase in soil organic matter. A 1 mm increase of the soil water-holding capacity reduced the yield gap by 1.06 t ha-1, while an increase in pH and in the application of potassium fertilizer widened the gap. These results suggest that both soil physical and chemical properties, together with weather data, should be taken into consideration to arrive at site-specific fertilizer recommendation and other agronomic practices.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44218286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Soil greenhouse gas emissions from different land utilization types in Western Kenya 肯尼亚西部不同土地利用类型的土壤温室气体排放
Frontiers in soil science Pub Date : 2022-11-30 DOI: 10.3389/fsoil.2022.956634
Esphorn Kibet, C. Musafiri, M. Kiboi, J. Macharia, O. Ng’etich, D. Kosgei, B. Mulianga, M. Okoti, Abdi Zeila, F. Ngetich
{"title":"Soil greenhouse gas emissions from different land utilization types in Western Kenya","authors":"Esphorn Kibet, C. Musafiri, M. Kiboi, J. Macharia, O. Ng’etich, D. Kosgei, B. Mulianga, M. Okoti, Abdi Zeila, F. Ngetich","doi":"10.3389/fsoil.2022.956634","DOIUrl":"https://doi.org/10.3389/fsoil.2022.956634","url":null,"abstract":"Introduction There is a vast data gap for the national and regional greenhouse gas (GHG) budget from different smallholder land utilization types in Kenya and sub-Saharan Africa (SSA) at large. Quantifying soil GHG, i.e., methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) emissions from smallholder land utilization types, is essential in filling the data gap. Methods We quantified soil GHG emissions from different land utilization types in Western Kenya. We conducted a 26-soil GHG sampling campaign from the different land utilization types. The five land utilization types include 1) agroforestry M (agroforestry Markhamia lutea and sorghum), 2) sole sorghum (sorghum monocrop), 3) agroforestry L (Sorghum and Leucaena leucocephala), 4) sole maize (maize monocrop), and 5) grazing land. Results and discussion The soil GHG fluxes varied across the land utilization types for all three GHGs (p ≤ 0.0001). We observed the lowest CH4 uptake under grazing land (−0.35 kg CH4–C ha−1) and the highest under sole maize (−1.05 kg CH4–C ha−1). We recorded the lowest soil CO2 emissions under sole maize at 6,509.86 kg CO2–Cha−1 and the highest under grazing land at 14,400.75 kg CO2–Cha−1. The results showed the lowest soil N2O fluxes under grazing land at 0.69 kg N2O–N ha−1 and the highest under agroforestry L at 2.48 kg N2O–N ha−1. The main drivers of soil GHG fluxes were soil bulk density, soil organic carbon, soil moisture, clay content, and root production. The yield-scale N2O fluxes ranged from 0.35 g N2O–N kg−1 under sole maize to 4.90 g N2O–N kg−1 grain yields under agroforestry L. Nevertheless, our findings on the influence of land utilization types on soil GHG fluxes and yield-scaled N2O emissions are within previous studies in SSA, including Kenya, thus fundamental in filling the national and regional data of emissions budget. The findings are pivotal to policymakers in developing low-carbon development across land utilization types for smallholders farming systems.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43098847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Deciphering the microbial composition of biodynamic preparations and their effects on the apple rhizosphere microbiome 生物动力制剂的微生物组成及其对苹果根际微生物组的影响
Frontiers in soil science Pub Date : 2022-11-16 DOI: 10.3389/fsoil.2022.1020869
Expedito Olimi, Samuel Bickel, W. Wicaksono, P. Kusstatscher, Robert Matzer, T. Cernava, G. Berg
{"title":"Deciphering the microbial composition of biodynamic preparations and their effects on the apple rhizosphere microbiome","authors":"Expedito Olimi, Samuel Bickel, W. Wicaksono, P. Kusstatscher, Robert Matzer, T. Cernava, G. Berg","doi":"10.3389/fsoil.2022.1020869","DOIUrl":"https://doi.org/10.3389/fsoil.2022.1020869","url":null,"abstract":"Soil microbial communities are crucial for plant growth and are already depleted by anthropogenic activities. The application of microbial transplants provides a strategy to restore beneficial soil traits, but less is known about the microbiota of traditional inoculants used in biodynamic agriculture. In this study, we used amplicon sequencing and quantitative PCR to decipher microbial communities of composts, biodynamic manures, and plant preparations from Austria and France. In addition, we investigated the effect of extracts derived from biodynamic manure and compost on the rhizosphere microbiome of apple trees. Microbiota abundance, composition, and diversity of biodynamic manures, plant preparations, and composts were distinct. Microbial abundances ranged between 1010-1011 (bacterial 16S rRNA genes) and 109-1011 (fungal ITS genes). The bacterial diversity was significantly higher in biodynamic manures compared to compost without discernible differences in abundance. Fungal diversity was not significantly different while abundance was increased in biodynamic manures. The microbial communities of biodynamic manures and plant preparations were specific for each production site, but all contain potentially plant-beneficial bacterial genera. When applied in apple orchards, biodynamic preparations (extracts) had the non-significant effect of reducing bacterial and fungal abundance in apple rhizosphere (4 months post-application), while increasing fungal and lowering bacterial Shannon diversity. One to four months after inoculation, individual taxa indicated differential abundance. We observed the reduction of the pathogenic fungus Alternaria, and the enrichment of potentially beneficial bacterial genera such as Pseudomonas. Our study paves way for the science-based adaptation of empirically developed biodynamic formulations under different farming practices to restore the vitality of agricultural soils.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43061511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mycorrhizae helper bacteria for managing the mycorrhizal soil infectivity 控制菌根土壤传染性的菌根辅助菌
Frontiers in soil science Pub Date : 2022-11-15 DOI: 10.3389/fsoil.2022.979246
Bouchra Nasslahsen, Y. Prin, Hicham Ferhout, A. Smouni, R. Duponnois
{"title":"Mycorrhizae helper bacteria for managing the mycorrhizal soil infectivity","authors":"Bouchra Nasslahsen, Y. Prin, Hicham Ferhout, A. Smouni, R. Duponnois","doi":"10.3389/fsoil.2022.979246","DOIUrl":"https://doi.org/10.3389/fsoil.2022.979246","url":null,"abstract":"Arbuscular mycorrhizal fungi are major components of soil microbiota and mainly interact with other microorganisms in the rhizosphere. Mycorrhiza establishment impacts the plant physiology and some nutritional and physical properties of the rhizospheric soil. These effects alter the development of the root or mycorrhizas resulting from the activity of soil microorganisms. The rhizosphere of mycorrhizal plants (mycorrhizosphere), is inhabited by large microbial activities responsible for several key ecosystem processes. This review is focused on the microbial interactions between mycorrhizal fungi and components of rhizosphere microbiota and highlight the agronomic potentialities of the Mycorrhiza Helper Bacteria on mycorrhiza formation. The main conclusion is that this MHB effect in the rhizosphere of mycorrhizal plants, enhance plant fitness and soil quality and are of great interest to ensure sustainable agricultural development and ecosystem functioning.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43264884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of water hyacinth biochar on lettuce growth in cadmium-contaminated soil 水葫芦生物炭对镉污染土壤中生菜生长的影响
Frontiers in soil science Pub Date : 2022-11-08 DOI: 10.3389/fsoil.2022.998654
Chun-huo Zhou, Yali Wang, Li'e Wei, Hua-jun Huang, Chenglong Yu, Xin′an Yin
{"title":"Effects of water hyacinth biochar on lettuce growth in cadmium-contaminated soil","authors":"Chun-huo Zhou, Yali Wang, Li'e Wei, Hua-jun Huang, Chenglong Yu, Xin′an Yin","doi":"10.3389/fsoil.2022.998654","DOIUrl":"https://doi.org/10.3389/fsoil.2022.998654","url":null,"abstract":"Recently, the excessive propagation of water hyacinth has led to serious ecological and environmental problems; thereby, its treatment and disposal are of great significance. Moreover, the remediation of heavy metals in soil is a hot topic at present. Thus, water hyacinth was adopted to prepare biochar to investigate its effect on Cd accumulation in lettuce by pot experiments in this study. The optimal application amount of water hyacinth biochar was 1% (30 t ha−1), considering the Cd absorption and yield of lettuce plants. Compared with those of control, the application of biochar prepared at 700°C for 2 h with an amount of 3% (90 t ha−1) resulted in a reduction in Cd by 73.6% and 38.1%, respectively, in the shoots and roots of lettuce. Within a certain carbonization time (0.5~2 h) and carbonization temperature (300°C~700°C), the content of available Cd in the soil decreases with the increase of the carbonization temperature and time, which might be the main reason for the lower Cd concentration in lettuce after applying the biochar. Furthermore, scanning electron microscopy (SEM) and energy-dispersive X-ray fluorescence spectroscopy (EDS) analyses showed that Cd was fixed on the biochar in a state of passivation, leading to a sharp decrease in the available Cd in the soil. Moreover, it was concluded that the application of biochar brings with it an obvious increase in the enzyme activity increment in the soil up to 2.3 times. Lastly, 16sRNA sequencing has shown that biochar addition leads to variations in microbial structure and abundance in soil. Accordingly, biochar prepared by water hyacinth can increase lettuce yield and reduce the concentration of heavy metals in lettuce.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43396095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using phosphate amendments to reduce bioaccessible Pb in contaminated soils: A meta-analysis. 利用磷酸盐改进剂降低污染土壤中生物可及性铅:一项荟萃分析。
Frontiers in soil science Pub Date : 2022-11-07 DOI: 10.3389/fsoil.2022.1028328
Manfred M Mayer, Nicholas T Basta, Kirk G Scheckel
{"title":"Using phosphate amendments to reduce bioaccessible Pb in contaminated soils: A meta-analysis.","authors":"Manfred M Mayer,&nbsp;Nicholas T Basta,&nbsp;Kirk G Scheckel","doi":"10.3389/fsoil.2022.1028328","DOIUrl":"https://doi.org/10.3389/fsoil.2022.1028328","url":null,"abstract":"<p><p>Measuring the reduction of <i>in vitro</i> bioaccessible (IVBA) Pb from the addition of phosphate amendments has been researched for more than 20 years. A range of effects have been observed from increases in IVBA Pb to almost 100% reduction. This study determined the mean change in IVBA Pb as a fraction of total Pb (AC) and relative to the IVBA Pb of the control soil (RC) with a random effects meta-analysis. Forty-four studies that investigated the ability of inorganic phosphate amendments to reduce IVBA Pb were identified through 5 databases. These studies were split into 3 groups: primary, secondary, and EPA Method 1340 based on selection criteria, with the primary group being utilized for subgroup analysis and meta-regression. The mean AC was approximately -12% and mean RC was approximately -25% for the primary and secondary groups. For the EPA Method 1340 group, the mean AC was -5% and mean RC was -8%. The results of subgroup analysis identified the phosphorous amendment applied and contamination source as having a significant effect on the AC and RC. Soluble amendments reduce bioaccessible Pb more than insoluble amendments and phosphoric acid is more effective than other phosphate amendments. Urban Pb contamination associated with legacy Pb-paint and tetraethyl Pb from gasoline showed lower reductions than other sources such as shooting ranges and smelting operations. Meta-regression identified high IVBA Pb in the control, low incubated soil pH, and high total Pb with the greater reductions in AC and RC. In order to facilitate comparisons across future remediation research, a set of minimum reported data should be included in published studies and researchers should use standardized <i>in vitro</i> bioaccessibility methods developed for P-treated soils. Additionally, a shared data repository should be created for soil remediation research to enhance available soil property information and better identify unique materials.</p>","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10660720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effectiveness of neem materials and biochar as nitrification inhibitors in reducing nitrate leaching in a compost-amended Ferric Luvisol 印楝材料和生物炭作为硝化抑制剂在改良Ferric Luvisol堆肥中减少硝酸盐浸出的效果
Frontiers in soil science Pub Date : 2022-11-02 DOI: 10.3389/fsoil.2022.1023743
Hammond Abeka, I. Lawson, E. Nartey, T. Adjadeh, S. Asuming-Brempong, P. Bindraban, W. Atakora
{"title":"Effectiveness of neem materials and biochar as nitrification inhibitors in reducing nitrate leaching in a compost-amended Ferric Luvisol","authors":"Hammond Abeka, I. Lawson, E. Nartey, T. Adjadeh, S. Asuming-Brempong, P. Bindraban, W. Atakora","doi":"10.3389/fsoil.2022.1023743","DOIUrl":"https://doi.org/10.3389/fsoil.2022.1023743","url":null,"abstract":"The nitrates produced after mineralization from compost may be prone to leaching, especially in tropical sandy soils, because of the increased rate of nitrification and the porous nature of such soils. This may result in low nitrogen (N) use efficiency and adverse environmental effects. Inorganic nitrification inhibitors are costly and mostly unavailable in Ghana. Research on simple but effective local materials for use as nitrification inhibitors is therefore a priority. Two such materials are neem materials and biochar. Neem materials can suppress nitrifying bacteria due to their antimicrobial properties. Biochar can hold ammonium in the soil, making it temporarily unavailable to nitrifying bacteria. This study aimed to determine the efficacy of neem materials and biochar as nitrification inhibitors and their influence on nitrate leaching. In preliminary studies: 1) pot incubation was conducted for 60 days to estimate the nitrification rate with manure, compost, and NH4Cl as the N source (150 kg N/ha) in one set and neem seeds, bark, and leaves (1.25 µg azadirachtin/g) in another set, using nitrate concentrations; and 2) the ammonium sorption and desorption capacities of sawdust, rice husk, and groundnut husk biochar were determined. In the main study, pot incubation with compost as the N source but treated with milled neem seeds or bark (1.25 µg azadirachtin/g) or sawdust biochar (20 t/ha) was conducted for 60 days, in which the nitrification inhibition was determined using nitrate concentrations. A leaching experiment in columns with similar treatments and maize sown was then conducted to quantify the nitrate in leachates. A high nitrification rate was recorded in compost-amended soil, almost half that of the standard (NH4Cl). The use of sawdust biochar, which showed the highest ammonium sorption and desorption capacity, resulted in 40% nitrification inhibition that lasted the entire incubation period. The use of neem seeds with an azadirachtin concentration of 3.92 mg/g resulted in a similar nitrification inhibition, but this only lasted 40 days. Inhibition caused by both materials resulted in about a 60% reduction in nitrate leached. Thus, neem seeds (498 kg/ha) and sawdust biochar (20 mt/ha) could be used to control nitrate leaching for short-duration and long-duration crops, respectively.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43236026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil microbial population as affected by tillage and rice cultivation modes in Stagnic Anthrosols and Lateritic Red Earth soils in Southern China 耕作和水稻栽培方式对中国南方滞煤无烟煤和红土土壤微生物种群的影响
Frontiers in soil science Pub Date : 2022-10-13 DOI: 10.3389/fsoil.2022.1020814
Evans Asenso, Zhimin Wang, Tian Kai, Jiuhao Li, Lian Hu
{"title":"Soil microbial population as affected by tillage and rice cultivation modes in Stagnic Anthrosols and Lateritic Red Earth soils in Southern China","authors":"Evans Asenso, Zhimin Wang, Tian Kai, Jiuhao Li, Lian Hu","doi":"10.3389/fsoil.2022.1020814","DOIUrl":"https://doi.org/10.3389/fsoil.2022.1020814","url":null,"abstract":"The microbial population (MP) is considered to be a relatively important part of soil health, quality, and productivity. Therefore, this study aimed to access the effects of tillage and rice cultivation modes on soil MP in Stagnic Anthrosols and Lateritic Red Earth soils. The treatments were as follows: (i) MDS: land tilled twice with a moldboard plow and hill-seeding of pregerminated seeds with a direct seeding machine of four to six seeds per hill at a planting space of 25 × 15 cm, (ii) RDS: land tilled twice with a rotary tiller and hill-seeding of pregerminated seeds with a direct seeding machine of four to six seeds per hill at a planting space of 25 × 15 cm, (iii) MMT: land tilled twice with a moldboard plow and 15-day-old seedlings were mechanically transplanted with a transplanting machine at a transplanting hill of four to six seedlings and at a transplanting space of 25 × 15 cm, and (iv) RMT: land tilled twice with a rotary tiller and 15-day-old seedlings were mechanically transplanted with a transplanting machine at a transplanting hill of four to six seedlings and a transplanting space of 25 × 15 cm. The findings showed that MDS improved the MP and increases rice yield. MDS showed a high increase in MP in both locations and the rice productivity of 32.81% (1H; first harvest) and 13.91% (2H; second harvest) and 16.48% (1H) and 18.13% (2H) for Zeng-Cheng and Yi-Yang, respectively. In conclusion, MDS was found to be better in improving the MP and increasing rice yield and could be adopted as a suitable approach for improving soil health, quality, and productivity.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43162888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信