Frontiers in soil science最新文献

筛选
英文 中文
Groundwater fluoride prediction modeling using physicochemical parameters in Punjab, India: a machine-learning approach 利用物理化学参数建立印度旁遮普省地下水氟化物预测模型:一种机器学习方法
IF 2.1
Frontiers in soil science Pub Date : 2024-07-18 DOI: 10.3389/fsoil.2024.1407502
Anjali Kerketta, Harmanpreet Singh Kapoor, Prafulla Kumar Sahoo
{"title":"Groundwater fluoride prediction modeling using physicochemical parameters in Punjab, India: a machine-learning approach","authors":"Anjali Kerketta, Harmanpreet Singh Kapoor, Prafulla Kumar Sahoo","doi":"10.3389/fsoil.2024.1407502","DOIUrl":"https://doi.org/10.3389/fsoil.2024.1407502","url":null,"abstract":"Rising fluoride levels in groundwater resources have become a worldwide concern, presenting a significant challenge to the safe utilization of water resources and posing potential risks to human well-being. Elevated fluoride and its vast spatial variability have been documented across different districts of Punjab, India, and it is, therefore, imperative to predict the fluoride levels for efficient groundwater resources planning and management.In this study, five different models, Support Vector Machine (SVM), Random Forest (RF), Extreme Gradient Boosting (Xgboost), Extreme Learning Machine (ELM), and Multilayer Perceptron (MLP), are proposed to predict groundwater fluoride using the physicochemical parameters and sampling depth as predictor variables. The performance of these five models was evaluated using the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE).ELM outperformed the remaining four models, thus exhibiting a strong predictive power. The R2, MAE, and RMSE values for ELM at the training and testing stages were 0.85, 0.46, 0.36 and, 0.95, 0.31, and 0.33, respectively, while other models yielded inferior results. Based on the relative importance scores, total dissolved solids (TDS), electrical conductivity (EC), sodium (Na+), chloride (Cl−), and calcium (Ca2+) contributed significantly to model performance. High variability in the target (fluoride) and predictor variables might have led to the poor performance of the models, implying the need for better data pre-processing techniques to improve data quality. Although ELM showed satisfactory results, it can be considered a promising model for predicting groundwater quality.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141827630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil ecology, food systems, and organic waste: the critical network nobody is talking about 土壤生态学、食品系统和有机废物:无人问津的关键网络
IF 2.1
Frontiers in soil science Pub Date : 2024-07-15 DOI: 10.3389/fsoil.2024.1403795
B. Perler
{"title":"Soil ecology, food systems, and organic waste: the critical network nobody is talking about","authors":"B. Perler","doi":"10.3389/fsoil.2024.1403795","DOIUrl":"https://doi.org/10.3389/fsoil.2024.1403795","url":null,"abstract":"","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term fertilization and liming increase soil fertility but reduce carbon stratification and stocks of paddy rice soils 长期施肥和石灰化提高了土壤肥力,但降低了水稻田土壤的碳分层和碳储量
IF 2.1
Frontiers in soil science Pub Date : 2024-07-05 DOI: 10.3389/fsoil.2024.1426894
E. Amoakwah, S. Kim, S. Jeon, J. Shim, Y. Lee, Soonik Kwon, Seon-Jin Park
{"title":"Long-term fertilization and liming increase soil fertility but reduce carbon stratification and stocks of paddy rice soils","authors":"E. Amoakwah, S. Kim, S. Jeon, J. Shim, Y. Lee, Soonik Kwon, Seon-Jin Park","doi":"10.3389/fsoil.2024.1426894","DOIUrl":"https://doi.org/10.3389/fsoil.2024.1426894","url":null,"abstract":"There is lack of information on the impact of acidity correctives (lime and silicate) and nitrogen (N), phosphorus (P), and potassium (K) fertilizers on the fertility, carbon stocks, carbon stratification, and carbon sequestration potential of paddy soils. To fill this knowledge gap and contribute to knowledge on how the treatments impact the soil ecosystem functions and services, a long-term field experiment was established in 1954 with four treatments and five replicates arranged in a randomized complete block design.Four treatments with five replicates per treatment were laid out in a randomized complete block design. The treatments included control/untreated (CT), only NPK, silicate-fortified NPK (NPKSi), and lime-fortified NPK (NPKLi). The treatments were applied to paddy soils classified as Fluvaquentic Eutrudepts.Application of the treatments led to significant increases in soil pH by 0.9, 1.12, and 1.5 pH units in the NPK, NPKLi, and NPKSi-treated soils in 2021, respectively, compared to the initial soil pH. The increase in pH subsequently led to significant reductions in C stratification and C stocks, with reduced rates of C sequestration observed to be more pronounced in the soils treated with lime and silicate-fortified NPK fertilizers (NKPSi and NPKLi). Both NPKSi and NPKLi moderately increased soil fertility. The highest increase in soil fertility was observed in the NPKSi treatment, with an annual growth rate of 0.0160 and a relative change ratio of 128.2% relative to the initial soil fertility index recorded in 1970. A Pearson correlation analysis revealed that soil pH, exchangeable calcium, and available silicate were the soil properties that significantly contributed to the increase in the soil fertility of the treated soils in the rice paddy agroecosystem.Conclusively, the inclusion of silicate in long-term fertilization is an effective strategy to mitigate soil acidity and increase soil fertility.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141674221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of local farming practices on soil organic carbon content, enzymatic activities, and microbial community structure in semi-arid soils of Morocco 摩洛哥半干旱土壤中当地耕作方式对土壤有机碳含量、酶活性和微生物群落结构的影响
Frontiers in soil science Pub Date : 2024-06-03 DOI: 10.3389/fsoil.2024.1369971
K. Jindo, Omar El Aroussi, J. de Vente, Jorge López Carratalá, Felipe Bastida, Carlos Garcia Izquierdo, Yoshito Sawada, T. Goron, Gonzalo G. Barberá
{"title":"Effects of local farming practices on soil organic carbon content, enzymatic activities, and microbial community structure in semi-arid soils of Morocco","authors":"K. Jindo, Omar El Aroussi, J. de Vente, Jorge López Carratalá, Felipe Bastida, Carlos Garcia Izquierdo, Yoshito Sawada, T. Goron, Gonzalo G. Barberá","doi":"10.3389/fsoil.2024.1369971","DOIUrl":"https://doi.org/10.3389/fsoil.2024.1369971","url":null,"abstract":"Soil organic carbon (SOC) is essential in semi-arid agricultural land for enhancing soil health, particularly through the promotion of microbial activities. This study assessed the impact of different agronomic practices on soil properties, microbial communities, and SOC levels in semi-arid Moroccan wheat fields. Three treatments were investigated: eucalyptus (Eucalyptus spp.) companion planting (EU), and fallowing with harvest residue mulching (FA), with the latter involving both short (3 months; FAS) and long (15 months; FAL) fallow periods. The study revealed significant variation in soil characteristics and microbial communities between these agronomic management regimes. Notably, soils managed with FAL contained elevated SOC levels (1.2%) compared to other treatments (FAS and EU) which show lower SOC range (0.62–0.86%). Both labile C (water-soluble carbon) and recalcitrant C (humic substances) were increased by FAL. Additionally, soil microbial biomass and dehydrogenase activity were observed to be high in FAL-managed soils, along with increased levels of extracellular enzymes related to nutrient cycling (β-glucosidase, alkaline phosphatase, and urease). Phospholipid fatty acid (PLFA) analysis indicated positive correlation between carbon content in soils and microbial populations. In contrast, soils managed with EU had significantly lower SOC levels, possibly due to differences in carbon fractionation. FAL increased soil enzymatic activities and enriched the microbial community when compared to EU management. In conclusion, this study indicated the importance of fallowing and fallowing period for conservation of SOC, and potential to mitigate negative effects of biophysical constraints on agricultural productivity in semi-arid soils of Northwest Africa.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141269012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rice straw incorporation and Azolla application improves agronomic nitrogen-use-efficiency and rice grain yields in paddy fields 掺入稻草和施用绿藻可提高水稻田的农艺氮利用率和稻谷产量
Frontiers in soil science Pub Date : 2024-05-21 DOI: 10.3389/fsoil.2024.1378065
Said H. Marzouk, J. Semoka, Nyambilila A. Amuri, Hamis J. Tindwa
{"title":"Rice straw incorporation and Azolla application improves agronomic nitrogen-use-efficiency and rice grain yields in paddy fields","authors":"Said H. Marzouk, J. Semoka, Nyambilila A. Amuri, Hamis J. Tindwa","doi":"10.3389/fsoil.2024.1378065","DOIUrl":"https://doi.org/10.3389/fsoil.2024.1378065","url":null,"abstract":"In paddy soils, excessive application of N fertilizer often results in substantial N losses due to low N utilization efficiency. However, this condition can be mitigated by enhancing soil organic carbon content. Two-year field experiment was carried out at Mkula Irrigation Scheme in Kilombero Valley, Tanzania with the aim of investigating the impact of Azolla, rice straw incorporation and reduced levels of nitrogen input from NPKS-containing fertilizers on N use efficiency, soil chemical properties and rice grain yield. Assuming that this technology will introduce a novel perspective to the research, shedding light on alternative and potentially more sustainable methods for nitrogen management in paddy soils, it will be particularly relevant in sub-Saharan Africa, where the annual cost of chemical fertilizers is expected to continue rising. The treatments involved absolute control, half dose N (50 kg N ha-1), full dose N (100 kg N ha-1), and combination of these N doses with PKS, dry Azolla (3.4 t ha-1) and rice straw (6.9 t ha-1) through omission approach. The soil of the experimental area was sandy clay loam in texture, very strongly acid (pH 4.8), normal electrical conductivity (0.06 dS m-1), low amounts of recorded organic carbon (1.35%), total nitrogen (0.33%), 0.68 mg kg−1 available P, exchangeable potassium (0.15 cmol(+) kg−1), calcium (0.19 mg kg−1) and sodium percentage (3.75%), with very low cation exchange capacity (1.6 cmol(+) kg−1). The results showed that combination of Azolla, rice straw +100 kg N ha-1 + 30 kg P ha-1 + 30 kg K ha-1 + 20 kg S ha-1 resulted in higher rice grain yield, nitrogen uptake and agronomic efficiency of N. Azolla, being an effective biofertilizer, significantly contributes to nitrogen fixation and soil enrichment. Interestingly, this study demonstrates that co-application of Azolla, rice straw, and 50% reduced N is effective for achieving high rice yields, minimizing over-dependence on chemical N fertilizer, sustainable agricultural development, and environmental conservation.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141113874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochar – a sustainable soil conditioner for improving soil health, crop production and environment under changing climate: a review 生物炭--在不断变化的气候条件下改善土壤健康、作物产量和环境的可持续土壤改良剂:综述
Frontiers in soil science Pub Date : 2024-05-07 DOI: 10.3389/fsoil.2024.1376159
Kannan Pandian, Shanmugam Vijayakumar, Mohamed Roshan Abu Firnass Mustaffa, Ponmani Subramanian, Swaminathan Chitraputhirapillai
{"title":"Biochar – a sustainable soil conditioner for improving soil health, crop production and environment under changing climate: a review","authors":"Kannan Pandian, Shanmugam Vijayakumar, Mohamed Roshan Abu Firnass Mustaffa, Ponmani Subramanian, Swaminathan Chitraputhirapillai","doi":"10.3389/fsoil.2024.1376159","DOIUrl":"https://doi.org/10.3389/fsoil.2024.1376159","url":null,"abstract":"Land degradation and climate change, two intricately intertwined phenomena, demand appropriate management solutions to effectively tackle the escalating issues of food and nutritional security. In this context, the realm of agriculture confronts formidable challenges in its pursuit of soil resource reclamation, improving water quality, mitigating climate change, and maintaining soil and natural resources for posterity. Central to these aspirations is the preservation of an optimum organic matter, serving as a linchpin threshold is crucial for protecting the physical, chemical, and biological integrity of the soil, while simultaneously sustaining agricultural productivity. To address these multifaceted challenges, the introduction of diverse organic amendments has emerged as a crucial strategy. Noteworthy among these is the application of biochar, which functions as a soil conditioner capable of bolstering soil health, mitigating the impact of climate change, and securing global food security. Biochar is a carbon-enriched substance produced through pyrolysis of assorted biomass waste. It has a larger surface area, higher cation exchange capacity, and an extended carbon storage capability. The strategic integration of biochar production and subsequent soil application engenders an array of benefits, encompassing the amelioration of soil physical properties, augmented retention and the availability of nutrients, and the enhancement of biological activity, resulting in higher agricultural yields and societal benefits through the curtailment of soil to atmosphere greenhouse gas emissions. Additionally, biochar demonstrates its efficacy in the realm of environmental restoration by serving as a medium for extraction and elimination of heavy metals, which often pervade aquatic ecosystems and soil matrices. This review addressed the need for biochar production, characterization, soil health, the possibility for environmental restoration, and crop yield fluctuations owing to climate change.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141002120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of salt-affected soil in selected rice irrigation schemes in Tanzania: understanding salt types for optimizing management approaches 坦桑尼亚选定水稻灌溉计划中受盐分影响土壤的评估:了解盐分类型以优化管理方法
Frontiers in soil science Pub Date : 2024-04-23 DOI: 10.3389/fsoil.2024.1372838
Moh’d M. Omar, Boniface J. Massawe, M. Shitindi, Ole Pedersen, J. Meliyo, K. Fue
{"title":"Assessment of salt-affected soil in selected rice irrigation schemes in Tanzania: understanding salt types for optimizing management approaches","authors":"Moh’d M. Omar, Boniface J. Massawe, M. Shitindi, Ole Pedersen, J. Meliyo, K. Fue","doi":"10.3389/fsoil.2024.1372838","DOIUrl":"https://doi.org/10.3389/fsoil.2024.1372838","url":null,"abstract":"Salt-affected soils have serious implications for agricultural land quality and productivity, leading to a reduction in the net cultivable area available for food production. This issue has emerged as one of the foremost global challenges in recent years, impacting both food security and environmental sustainability. This research focuses on soil characterizations conducted in three irrigation schemes to understand the types, distribution, and nature of salt-affected soils. Auger observations served as the basic methodology for soil unit delineation in this study. Twelve representative soil pits with a depth of more than 160 cm were described, and undisturbed and disturbed samples were collected and analyzed for physical and chemical properties. The schemes were characterized by low levels of available phosphorus, organic carbon, and total nitrogen, as well as variations in exchangeable bases. Furthermore, 37.5% of the analyzed horizons highlighted the presence of salt-affected soils. Sodium was the predominant cation, followed by magnesium, potassium, and calcium. Likewise, HCO3− was the dominant anion, followed by Cl− and SO42−. The results of this study reveal the existence of two types of salt-affected soil. Uturo irrigation scheme had sodic soils, while the Ndungu irrigation scheme had saline-sodic soils. Additionally, both sodic and saline-sodic soils have been discovered in the Mawala irrigation scheme. The root cause of this challenge is inherent soil conditions, exacerbated by inadequate drainage infrastructure. Therefore, measures such as the application of gypsum followed by salt leaching, improving soil drainage by incorporating organic matter, improving drainage infrastructure, and using rice-tolerant varieties are recommended to mitigate salt stress and improve soil fertility. It is imperative to establish a robust framework for continuous monitoring and regular assessment of soil health to enable timely interventions and informed decisions for sustainable agricultural management.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140670805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sandy soil reclamation technologies to improve crop productivity and soil health: a review 提高作物产量和土壤健康的沙质土壤改良技术:综述
Frontiers in soil science Pub Date : 2024-04-12 DOI: 10.3389/fsoil.2024.1345895
S. Musei, S. Kuyah, Sylvia S. Nyawira, S. Ng’ang’a, W. Karugu, Alvin Smucker, L. Nkurunziza
{"title":"Sandy soil reclamation technologies to improve crop productivity and soil health: a review","authors":"S. Musei, S. Kuyah, Sylvia S. Nyawira, S. Ng’ang’a, W. Karugu, Alvin Smucker, L. Nkurunziza","doi":"10.3389/fsoil.2024.1345895","DOIUrl":"https://doi.org/10.3389/fsoil.2024.1345895","url":null,"abstract":"Sandy soils are characterized by low soil moisture content and nutrient retention due to high permeability, limiting crop productivity and threatening food security in arid and semi-arid regions worldwide. Various reclamation technologies have been developed to address these challenges, but their effectiveness has not been comprehensively evaluated. This systematic review evaluated the performance of 42 sandy soil reclamation technologies reported in 144 studies from 27 countries that met specified selection criteria. Performance was evaluated based on response ratio (RR) of aboveground biomass and grain yield, as indicators of productivity, and soil moisture content and soil organic carbon (SOC), as indicators of soil health. The 42 technologies employed four main soil amendments: biochar, organic amendments, organic amendments combined with biochar, and soft rock. Overall, all technologies increased productivity and improved soil health. Biochar application was found to be the most effective technology, increasing grain yield by 51.6%, aboveground biomass by 67.4%, soil moisture content by 17.3%, and SOC by 74.2%. Soft rock application increased grain yield by 20.3%, aboveground biomass by 27.6%, soil moisture content by 54.5%, and SOC by 12.8%. Organic amendments increased grain yield by 48.7%, aboveground biomass by 45.6%, soil moisture content by 20.8%, and SOC by 36.7%. However, the combination of biochar and organic amendments showed lower improvements, with increases of 25.4%, 15.6%, 1.3%, and 25.4% for grain yield, aboveground biomass, soil moisture content, and SOC, respectively. Our conclusion is that the findings provide strong evidence that sandy soil reclamation technologies can significantly improve crop productivity and food security. Considering the variability in technologies responses across continents, there is need for further research to determine the optimal technology for specific locations, crops, and management practices.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140711088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal distribution, sources, and ecological risk of soil polycyclic aromatic hydrocarbons in Chinese urban agglomerations from 2000 to 2020 2000-2020 年中国城市群土壤多环芳烃的时空分布、来源和生态风险
Frontiers in soil science Pub Date : 2024-04-10 DOI: 10.3389/fsoil.2024.1337656
Hai Guo, Zesong Wei, Guangxing Guo, Zejia Zhang
{"title":"Spatiotemporal distribution, sources, and ecological risk of soil polycyclic aromatic hydrocarbons in Chinese urban agglomerations from 2000 to 2020","authors":"Hai Guo, Zesong Wei, Guangxing Guo, Zejia Zhang","doi":"10.3389/fsoil.2024.1337656","DOIUrl":"https://doi.org/10.3389/fsoil.2024.1337656","url":null,"abstract":"To investigate the spatial and temporal distribution, sources, and ecological risk of soil polycyclic aromatic hydrocarbons (PAHs) in China’s urban agglomerations from 2000 to 2020, a comprehensive search strategy was employed using the keywords “soil”, “PAHs”, and “city”. A total of 122 relevant studies that provided information on individual PAH content during the specified time period were collected. These studies encompassed 20 urban agglomerations in China, which were further categorized into two distinct periods: 2000 to 2010 and 2011 to 2020. The diagnostic ratio method and principal component analysis were employed to identify the sources of PAHs, and a risk quotient model was used to evaluate the soil ecological risk. The results revealed the average PAH content in the 20 urban agglomerations in China from 2011 to 2020 was 2,439 ± 4,633 ng·g-1, which exceeded the severe pollution level cut-off (> 1,000 ng·g-1). The soil PAH content in the period from 2011 to 2020 decreased by 28% compared to the soil PAH content in the period from 2000 to 2010. Soil PAH pollution was more severe in the northern urban agglomerations than in the southern urban agglomerations. Diagnostic ratios and principal component analysis demonstrated that the principal sources in most urban agglomerations in China were traffic and coal combustion. GeoDetector found that coal and fuel oil consumption were the main factors affecting the spatial differentiation of PAHs. The ecological risk quotient showed that approximately 80% of the urban agglomerations were at a medium-high ecological risk from 2000 to 2010, compared with 72% from 2011 to 2020. Thus, it is necessary to deepen energy structure reform to alleviate the threat of serious pollution caused by coal and fuel oil in urban agglomerations.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140719886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inversion of soil carbon, nitrogen, and phosphorus in the Yellow River Wetland of Shaanxi Province using field in situ hyperspectroscopy 利用野外原位高光谱技术反演陕西黄河湿地土壤碳氮磷含量
Frontiers in soil science Pub Date : 2024-04-09 DOI: 10.3389/fsoil.2024.1364426
Leichao Nie, Keying Qu, Lijuan Cui, Xiajie Zhai, Xinsheng Zhao, Yinru Lei, Jing Li, Jinzhi Wang, Rumiao Wang, Wei Li
{"title":"Inversion of soil carbon, nitrogen, and phosphorus in the Yellow River Wetland of Shaanxi Province using field in situ hyperspectroscopy","authors":"Leichao Nie, Keying Qu, Lijuan Cui, Xiajie Zhai, Xinsheng Zhao, Yinru Lei, Jing Li, Jinzhi Wang, Rumiao Wang, Wei Li","doi":"10.3389/fsoil.2024.1364426","DOIUrl":"https://doi.org/10.3389/fsoil.2024.1364426","url":null,"abstract":"Soil nitrogen and phosphorus are directly related to soil quality and vegetation growth and are, therefore, a common research topic in studies on global climate change, material cycling, and information exchange in terrestrial ecosystems. However, collecting soil hyperspectral data under in situ conditions and predicting soil properties, which can effectively save time, manpower, material resources, and financial costs, have been generally undervalued. Recent optimization techniques have, however, addressed several of the limitations previously restricting this technique. In this study, hyperspectral data were taken from surface soils under different vegetation types in the wetlands of the Shaanxi Yellow River Wetland Provincial Nature Reserve. Through in situ original and first-order differential transformation spectral data, three prediction models for soil carbon, nitrogen, and phosphorus contents were established: partial least squares (PLSR), random forest (RF), and Gaussian process regression (GPR). The R2 and RMSR of the constructed models were then compared to select the optimal model for evaluating soil content. The soil organic carbon, total nitrogen, and total phosphorus content models established based on the first-order differential had a higher accuracy when modeling and during model validation than those of other models. Moreover, the PLSR model based on the original spectrum and the Gaussian process regression model had a superior inversion performance. These results provide solid theoretical and technical support for developing the optimal model for the quantitative inversion of wetland surface soil carbon, nitrogen, and phosphorus based on in situ hyperspectral technology.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140721339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信