I. A. Mamedova, Z. A. Jahangirli, S. S. Osmanova, N. A. Abdullayev
{"title":"Elastic Properties and Regularities in Frequencies of Optical Phonons of ({{{mathbf{A}}}^{{{mathbf{II}}}}}{mathbf{B}}_{2}^{{{mathbf{III}}}}{mathbf{C}}_{4}^{{{mathbf{VI}}}}) Compounds","authors":"I. A. Mamedova, Z. A. Jahangirli, S. S. Osmanova, N. A. Abdullayev","doi":"10.1134/S1063783424601322","DOIUrl":"10.1134/S1063783424601322","url":null,"abstract":"<p>Elastic constants <i>с</i><sub><i>ij</i></sub> of thiogalates CdGa<sub>2</sub>S<sub>4</sub>, CdGa<sub>2</sub>Se<sub>4</sub>, CdGa<sub>2</sub>Te<sub>4</sub>, and ZnGa<sub>2</sub>Sе<sub>4</sub> are calculated using the density functional theory (DFT). The elastic moduli <i>B</i> have been calculated. The regularities have been found in the dependences of the optical phonon frequencies on the atomic masses in <span>({{{text{A}}}^{{{text{II}}}}}{text{B}}_{2}^{{{text{III}}}}{text{C}}_{4}^{{{text{VI}}}})</span> compounds. The force constants of interatomic bonds in CdGa<sub>2</sub>Te<sub>4</sub> and ZnGa<sub>2</sub>Sе<sub>4</sub> compounds are determined.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"529 - 536"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ibrahim Morad, Ghada El-Barbary, Said M. El-Sheikh, Y. A. Sharaby
{"title":"Investigation of Insulator-to-Semiconductor Fast Transition in Sheet-Like Polyaniline Films","authors":"Ibrahim Morad, Ghada El-Barbary, Said M. El-Sheikh, Y. A. Sharaby","doi":"10.1134/S1063783424601334","DOIUrl":"10.1134/S1063783424601334","url":null,"abstract":"<p>Ethylenediamine-doped (EDA-doped) polyaniline (PANI) films were deposited via spin coating technique on a glass substrate. The samples were annealed at different times and temperatures. The characterizations of the prepared PANI films were described by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). It is found that the conductivity changes under deep mouth exhaling for 150/1 h sample is 1.65 times faster than the films annealed at 100°C/4 h. The response and recovery time of the 150/1 h EDA-doped PANI film is decreased by order of 0.63 and 1.29 s than those films dried at 100°C for 4 h, respectively. The 150/1 h EDA doped PANI film during deep exhaling its conductivity increased abruptly from 2.2 × 10<sup>–7</sup> to 0.026 S/cm<sup>–1</sup>. In a few seconds, following an inhalation, there occurs a complete transition to the dry state conductivity. Furthermore, the increment in conductivity of the EDA-doped PANI films was determined at various RH levels (20, 40, 60, 80, and 90%) with exposure and evacuation of the humid air. The doped PANI sample annealed at 150°C for 1 h exhibit the highest conductivity at 90% RH. The conductivity was increased from 2.16 × 10<sup>–7</sup> S/cm for the insulating state at the dry state to 0.23 S/cm for the semiconducting state at 90% RH. Consequently, the 150/1 h sample showed an increase in conductivity by order of 10<sup>6</sup> at 90% RH. For all samples, the conductivity progressively rises as the RH value increases till 90% of RH value samples exhibit an abrupt increase in conductivity except the 100°C/4 h sample. The highest conductivity is 0.041 S/cm at 90% RH obtained for the case of 150/30 min sample, whereas the 150/1 min and 100/4 h films show maximum conductivity of 0.027 and 0.007, respectively.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"505 - 515"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermoelectric Power Characteristics of Quaternary Layered Structured Tl4In3GaS8 Crystals","authors":"Khairiah Alshehri","doi":"10.1134/S1063783424601231","DOIUrl":"10.1134/S1063783424601231","url":null,"abstract":"<p>A modified Bridgman technique was used to crystallize the Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> compound. The rate of change in the thermoelectric power (TEP) as a function of temperature of the Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> compound is measured within the temperature range (218–402 K). Measurements revealed that the conductivity of the crystals was n-type. Investigations were conducted into the connection between TEP, charge carrier concentration, and electrical conductivity. The experimental results were used to calculate a number of physical properties, including as mobilities, diffusion coefficients, diffusion lengths, effective masses, and carrier relaxation periods. The overall behavior of the semiconductor is shown by these features. According to our findings, asgrown Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> crystals are typically <i>n</i>-type and have the potential to be employed as thermoelectric power generating possibilities.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"516 - 520"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahendra S. Shinde, Abhinay S. Mandawade, Manoj A. More, Swapnil S. Tayade, Laxman N. Bhoy, Ganesh E. Patil
{"title":"Ammonia Gas Sensing Properties of Bismuth Oxide Thick Films and Its Structural, Optical, Morphological Characterization","authors":"Mahendra S. Shinde, Abhinay S. Mandawade, Manoj A. More, Swapnil S. Tayade, Laxman N. Bhoy, Ganesh E. Patil","doi":"10.1134/S1063783424601243","DOIUrl":"10.1134/S1063783424601243","url":null,"abstract":"<p>This paper successfully synthesized Bismuth oxide (Bi<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs) using the sol–gel method as Bismuth nitrate pentahydrate as a precursor. The average crystallite size of the NPs was characterized by X-ray diffraction (XRD) analysis and the size of the NPs found to be 17 nm. For the band gap measurement UV-visible spectra of NPs were recorded and it was found to be 2.7 eV. The surface morphology of Bi<sub>2</sub>O<sub>3</sub> NPs was examined through field emission scanning electron microscopy (FESEM) showing spherical nature-like morphology. The gas sensor was fabricated using as-prepared Bi<sub>2</sub>O<sub>3</sub> NPs by standard screen-printing technique and it was tested for various gases such as NH<sub>3</sub>, NO<sub>2</sub>, ethanol, LPG, and methanol as a function of operating temperature. The effect of operating temperature and gas concentration were investigated in detail to understand Bi<sub>2</sub>O<sub>3</sub> NPs sensor for NH<sub>3</sub> gas and found to be very efficient.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"537 - 542"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic, Optical, and Antibacterial Properties of Ag+ and Ti4+ Doped Cobalt Ferrite Nanocrystals","authors":"Krishna Kumar Keshri, Manoj Kumar Rout, Rajdeep Saha, Sunita Keshri","doi":"10.1134/S1063783424601255","DOIUrl":"10.1134/S1063783424601255","url":null,"abstract":"<p>In this paper, we explore the magnetic, optical, and antibacterial properties of <span>({text{CoF}}{{{text{e}}}_{2}}{{{text{O}}}_{4}})</span> (CFO), <span>({text{C}}{{{text{o}}}_{{0.98}}}{text{A}}{{{text{g}}}_{{0.02}}}{text{F}}{{{text{e}}}_{2}}{{{text{O}}}_{4}})</span> (CAFO), and <span>({text{C}}{{{text{o}}}_{{0.98}}}{text{T}}{{{text{i}}}_{{0.02}}}{text{F}}{{{text{e}}}_{2}}{{{text{O}}}_{4}})</span> (CTFO) and spinel ferrite nanocrystals. The XRD analysis of these crystals reveals a single-phase cubic structure of <span>(Fdbar {3}m)</span> space group with a crystallite size of 45, 46, and 41 nm, respectively. The room temperature magnetic measurement shows that CTFO has the highest saturation and remanent magnetization, whereas CFO has the highest coercivity and magnetic squareness ratio. Optical properties of these samples have been taken in the range of 300–900 nm. The band gap is calculated using Tauc’s plot, and it decreases with the doping of <span>({text{A}}{{{text{g}}}^{ + }})</span> and <span>({text{T}}{{{text{i}}}^{{4 + }}})</span> ions. Antibacterial studies of these samples have been done by disc diffusion method for Gram-positive and Gram-negative bacteria, <i>Staphylococcus aureus</i> (<i>S</i>. <i>aureus</i>) and <i>Escherichia coli</i> (<i>E. coli</i>), respectively. The compositions have shown better antibacterial response for <i>S</i>. <i>aureus</i> over <i>E. coli</i>. The 200 mg/mL CTFO sample has shown the most effective result against <i>S. aureus</i> bacteria, with 18 mm diameter value of zone of inhibition.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"521 - 528"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. M. Salmanov, A. G. Guseinov, M. A. Jafarov, R. M. Mammadov, M. M. Dzhakhangirov, T. A. Mamedova, F. Sh. Akhmedova
{"title":"Optical Properties of GaS Nanoparticles Prepared by Laser Ablation","authors":"V. M. Salmanov, A. G. Guseinov, M. A. Jafarov, R. M. Mammadov, M. M. Dzhakhangirov, T. A. Mamedova, F. Sh. Akhmedova","doi":"10.1134/S106378342460153X","DOIUrl":"10.1134/S106378342460153X","url":null,"abstract":"<p>GaS Nanoparticles prepared by laser ablation in a liquid. The nanoparticle structure is studied by XRD, SEM, and EDAX methods. The energy gap width and the character of optical transitions are determined using the optical absorption and photoluminescence spectra.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"484 - 488"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating the Potential of Ca3SbBr3 Halide Perovskite for Photovoltaics: A Structural, Mechanical, and Optoelectronic Study Using GGA-PBE and HSE06 Functionals","authors":"Krishna Kumar Mishra","doi":"10.1134/S1063783424601486","DOIUrl":"10.1134/S1063783424601486","url":null,"abstract":"<p>In this study, we delve into the potential of the halide perovskite material Ca<sub>3</sub>SbBr<sub>3</sub> for solar cell applications, using QuantumATK simulation tool. By employing DFT with both GGA-PBE and HSE06 functionals, we thoroughly explored its structural, mechanical, electronic and optical properties. Our study reveals that Ca<sub>3</sub>SbBr<sub>3</sub> adopts a cubic crystal structure. The lattice constant for this structure is measured to be 6.336 Å. Notably, the material exhibits a direct band gap of 1.782 eV with GGA and 2.592 eV with HSE06, underscoring its efficiency in solar energy conversion. Moreover, Ca<sub>3</sub>SbBr<sub>3</sub> shows strong light absorption, with significant peaks at 629, 396 cm<sup>–1</sup> (3.52 eV) and 245, 951 cm<sup>–1</sup> (3.76 eV), and refractive indices of 2.10 (GGA) and 1.825 (HSE06). These results suggest that Ca<sub>3</sub>SbBr<sub>3</sub> holds great promise as a next-generation solar material, thanks to its advantageous electronic and optical properties.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"464 - 475"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yogesh B. Aher, Gotan H. Jain, Sarika D. Shinde, Abhinay S. Mandawade, Laxmi D. Sonawane, Dnyaneshwari Y. Patil, Huda I. Ahemad, Matthew D. Femi, Manoj A. More, Dnyaneshwar D. Kajale, Ganesh E. Patil
{"title":"Synthesis and Characterization of WO3 Thin Film by Spray Pyrolysis for Gas Sensing Application","authors":"Yogesh B. Aher, Gotan H. Jain, Sarika D. Shinde, Abhinay S. Mandawade, Laxmi D. Sonawane, Dnyaneshwari Y. Patil, Huda I. Ahemad, Matthew D. Femi, Manoj A. More, Dnyaneshwar D. Kajale, Ganesh E. Patil","doi":"10.1134/S1063783424601309","DOIUrl":"10.1134/S1063783424601309","url":null,"abstract":"<p>Nanostructured tungsten oxide (WO<sub>3</sub>) thin-film sensor materials were deposited on a glass substrate by spray pyrolysis technique (SPT) and investigated their gas sensor properties. As prepared WO<sub>3</sub> thin films were characterized by different techniques such as UV-Visible Spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The optical band gap of film was determined using the absorption spectra obtained with UV-visible spectroscopy which was found to be 2.9 eV. XRD results of the as prepared WO<sub>3</sub> exhibits crystalline structure and favored alignment along the (002) axis. The spray pyrolysis technique used for the preparation of the WO<sub>3</sub> thin film often results in a porous and rough surface with a network of interconnected fiber-like structures., which are ideal for gas sensor applications due to increased surface exposure. The gas sensing performance of the WO<sub>3</sub> thin film was tested towards various gases such as H<sub>2</sub>S, NH<sub>3</sub>, LPG, H<sub>2</sub>, ethanol, CO<sub>2</sub>, Cl<sub>2</sub> at different operating temperatures. The WO<sub>3</sub> thin films exhibited their highest gas response to H<sub>2</sub>S gas at an operating temperature of 50°C, with fast response and recovery times of 18 and 31 s, respectively. These results suggest that WO<sub>3</sub> thin films could serve as effective H<sub>2</sub>S gas sensors.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"497 - 504"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Younes Errouas, Ilyass El Kadmiri, Youssef Ben-Ali, Driss Bria
{"title":"Trapping Defect Modes in a Quasi-Periodic Star Waveguide Structure Based on the Fibonacci Sequence","authors":"Younes Errouas, Ilyass El Kadmiri, Youssef Ben-Ali, Driss Bria","doi":"10.1134/S106378342460122X","DOIUrl":"10.1134/S106378342460122X","url":null,"abstract":"<p>Understanding the interaction between electromagnetic wave propagation and the components of the photonic structure is crucial for developing advanced telecommunications systems. In this study, we investigate a one-dimensional Fibonacci quasiperiodic structure, consisting of periodic waveguides with resonators of varying lengths that depend on each other according to a Fibonacci sequence, attached to <i>N</i> evenly spaced sites. Our research reveals that the photonic bandgap of this structure is significantly influenced by the first two Fibonacci states, <i>d</i><sub>2in</sub> and <i>d</i><sub>21</sub>. Additionally, by introducing geometric defects at the resonators level, we enhance the structure’s ability to generate new permissible states within these gaps. The remarkably narrow width of these gaps confines defect modes to a very low-frequency range. Consequently, these defect modes emerge as distinct peaks in the transmission spectrum with optimal transmission and a very high-quality factor. Our results not only shed light on the core characteristics of photonic bandgaps, but also open up new possibilities for their practical use in telecommunications.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"489 - 496"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Nor Tukko, Muhammad Ali Al-hajji, Sulyman Alasle, Mudar Al-Okla, Hani Zeidan
{"title":"Impact of Temperature on the Structural and Optical Properties of Silver Sulfide Films Prepared by Chemical Bath Deposition","authors":"Muhammad Nor Tukko, Muhammad Ali Al-hajji, Sulyman Alasle, Mudar Al-Okla, Hani Zeidan","doi":"10.1134/S1063783424601450","DOIUrl":"10.1134/S1063783424601450","url":null,"abstract":"<p>Transparent semiconducting silver sulfide (Ag<sub>2</sub>S) thin films were deposited by chemical bath deposition technique on glass substrates. The effect of different deposition temperatures (10, 20, and 30°C) on the structural and optical properties of silver sulfide films was studied. The XRD spectra showed that the structure of the films was monoclinic and polycrystalline, and the predominant growth of crystals was at the plane (022). The intensity of the peaks increases with increasing preparation temperature, becoming narrower and clearer. The best-structured films with the least crystalline defects were that prepared at 30°C. UV-VIS spectroscopic scanning showed that all films had a minimum transmittance and maximum absorbance at the ultraviolet field within the range 300–350 nm. The transmittance decreased and absorbance increased with increasing wavelength and temperature. The energy gap values changed within the range 2.105–2.242 eV, which clearly increased with increasing preparation temperature.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"459 - 463"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}