{"title":"Imaging tools for plant nanobiotechnology.","authors":"Bin Zhao, Zhongxu Luo, Honglu Zhang, Huan Zhang","doi":"10.3389/fgeed.2022.1029944","DOIUrl":"10.3389/fgeed.2022.1029944","url":null,"abstract":"<p><p>The successful application of nanobiotechnology in biomedicine has greatly changed the traditional way of diagnosis and treating of disease, and is promising for revolutionizing the traditional plant nanobiotechnology. Over the past few years, nanobiotechnology has increasingly expanded into plant research area. Nanomaterials can be designed as vectors for targeted delivery and controlled release of fertilizers, pesticides, herbicides, nucleotides, proteins, etc. Interestingly, nanomaterials with unique physical and chemical properties can directly affect plant growth and development; improve plant resistance to disease and stress; design as sensors in plant biology; and even be used for plant genetic engineering. Similarly, there have been concerns about the potential biological toxicity of nanomaterials. Selecting appropriate characterization methods will help understand how nanomaterials interact with plants and promote advances in plant nanobiotechnology. However, there are relatively few reviews of tools for characterizing nanomaterials in plant nanobiotechnology. In this review, we present relevant imaging tools that have been used in plant nanobiotechnology to monitor nanomaterial migration, interaction with and internalization into plants at three-dimensional lengths. Including: 1) Migration of nanomaterial into plant organs 2) Penetration of nanomaterial into plant tissues (iii)Internalization of nanomaterials by plant cells and interactions with plant subcellular structures. We compare the advantages and disadvantages of current characterization tools and propose future optimal characterization methods for plant nanobiotechnology.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"4 ","pages":"1029944"},"PeriodicalIF":4.9,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10436908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CRISPR nuclease off-target activity and mitigation strategies.","authors":"Beeke Wienert, M Kyle Cromer","doi":"10.3389/fgeed.2022.1050507","DOIUrl":"10.3389/fgeed.2022.1050507","url":null,"abstract":"<p><p>The discovery of CRISPR has allowed site-specific genomic modification to become a reality and this technology is now being applied in a number of human clinical trials. While this technology has demonstrated impressive efficacy in the clinic to date, there remains the potential for unintended on- and off-target effects of CRISPR nuclease activity. A variety of <i>in silico</i>-based prediction tools and empirically derived experimental methods have been developed to identify the most common unintended effect-small insertions and deletions at genomic sites with homology to the guide RNA. However, large-scale aberrations have recently been reported such as translocations, inversions, deletions, and even chromothripsis. These are more difficult to detect using current workflows indicating a major unmet need in the field. In this review we summarize potential sequencing-based solutions that may be able to detect these large-scale effects even at low frequencies of occurrence. In addition, many of the current clinical trials using CRISPR involve <i>ex vivo</i> isolation of a patient's own stem cells, modification, and re-transplantation. However, there is growing interest in direct, <i>in vivo</i> delivery of genome editing tools. While this strategy has the potential to address disease in cell types that are not amenable to <i>ex vivo</i> manipulation, <i>in vivo</i> editing has only one desired outcome-on-target editing in the cell type of interest. CRISPR activity in unintended cell types (both on- and off-target) is therefore a major safety as well as ethical concern in tissues that could enable germline transmission. In this review, we have summarized the strengths and weaknesses of current editing and delivery tools and potential improvements to off-target and off-tissue CRISPR activity detection. We have also outlined potential mitigation strategies that will ensure that the safety of CRISPR keeps pace with efficacy, a necessary requirement if this technology is to realize its full translational potential.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"4 ","pages":"1050507"},"PeriodicalIF":4.9,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10658011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sachin Rustgi, Salman Naveed, Jonathan Windham, Huan Zhang, Gözde S Demirer
{"title":"Plant biomacromolecule delivery methods in the 21st century.","authors":"Sachin Rustgi, Salman Naveed, Jonathan Windham, Huan Zhang, Gözde S Demirer","doi":"10.3389/fgeed.2022.1011934","DOIUrl":"10.3389/fgeed.2022.1011934","url":null,"abstract":"<p><p>The 21st century witnessed a boom in plant genomics and gene characterization studies through RNA interference and site-directed mutagenesis. Specifically, the last 15 years marked a rapid increase in discovering and implementing different genome editing techniques. Methods to deliver gene editing reagents have also attempted to keep pace with the discovery and implementation of gene editing tools in plants. As a result, various transient/stable, quick/lengthy, expensive (requiring specialized equipment)/inexpensive, and versatile/specific (species, developmental stage, or tissue) methods were developed. A brief account of these methods with emphasis on recent developments is provided in this review article. Additionally, the strengths and limitations of each method are listed to allow the reader to select the most appropriate method for their specific studies. Finally, a perspective for future developments and needs in this research area is presented.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"4 ","pages":"1011934"},"PeriodicalIF":4.9,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9176663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enabling Genome Editing for Enhanced Agricultural Sustainability","authors":"F. Keiper, A. Atanassova","doi":"10.3389/fgeed.2022.898950","DOIUrl":"https://doi.org/10.3389/fgeed.2022.898950","url":null,"abstract":"Agricultural sustainability encompasses environmental, social, and economic aspects, all of which are continually shifting due changing environmental pressures and societal expectations. A range of strategies are required to address these challenges, and these include the use of innovation and adoption of the best available practices and technologies. Advances in biotechnologies, including genome editing, and their application in plant breeding and research are expected to provide a range of benefits that contribute to all aspects of agricultural sustainability. However, adoption of these technologies needs to be supported by proportionate, coherent, forward-looking, and adaptable policies and regulatory approaches. In this Perspective, we reflect on the regulatory challenges associated with commercialising a transgenic crop, and developments thus far in providing regulatory clarity for genome edited crops. We aim to demonstrate that much remains to be done to shift towards a more proportionate and enabling approach before the potential benefits of genome edited crops can be realised. The implications of precautionary and disproportionate regulation are also discussed.","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42310432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advantages and Limitations of Gene Therapy and Gene Editing for Friedreich's Ataxia.","authors":"Anusha Sivakumar, Stephanie Cherqui","doi":"10.3389/fgeed.2022.903139","DOIUrl":"10.3389/fgeed.2022.903139","url":null,"abstract":"<p><p>Friedreich's ataxia (FRDA) is an inherited, multisystemic disorder predominantly caused by GAA hyper expansion in intron 1 of frataxin (<i>FXN</i>) gene. This expansion mutation transcriptionally represses <i>FXN</i>, a mitochondrial protein that is required for iron metabolism and mitochondrial homeostasis, leading to neurodegerative and cardiac dysfunction. Current therapeutic options for FRDA are focused on improving mitochondrial function and increasing frataxin expression through pharmacological interventions but are not effective in delaying or preventing the neurodegeneration in clinical trials. Recent research on <i>in vivo</i> and <i>ex vivo</i> gene therapy methods in FRDA animal and cell models showcase its promise as a one-time therapy for FRDA. In this review, we provide an overview on the current and emerging prospects of gene therapy for FRDA, with specific focus on advantages of CRISPR/Cas9-mediated gene editing of <i>FXN</i> as a viable option to restore endogenous frataxin expression. We also assess the potential of <i>ex vivo</i> gene editing in hematopoietic stem and progenitor cells as a potential autologous transplantation therapeutic option and discuss its advantages in tackling FRDA-specific safety aspects for clinical translation.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"4 ","pages":"903139"},"PeriodicalIF":5.4,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9157421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Neelakandan, B. Subedi, S. Traore, P. Binagwa, D. Wright, G. He
{"title":"Base Editing in Peanut Using CRISPR/nCas9","authors":"A. Neelakandan, B. Subedi, S. Traore, P. Binagwa, D. Wright, G. He","doi":"10.3389/fgeed.2022.901444","DOIUrl":"https://doi.org/10.3389/fgeed.2022.901444","url":null,"abstract":"Peanut (Arachis hypogaea L.), an allotetraploid legume of the Fabaceae family, is able to thrive in tropical and subtropical regions and is considered as a promising oil seed crop worldwide. Increasing the content of oleic acid has become one of the major goals in peanut breeding because of health benefits such as reduced blood cholesterol level, antioxidant properties and industrial benefits such as longer shelf life. Genomic sequencing of peanut has provided evidence of homeologous AhFAD2A and AhFAD2B genes encoding Fatty Acid Desaturase2 (FAD2), which are responsible for catalyzing the conversion of monounsaturated oleic acid into polyunsaturated linoleic acid. Research studies demonstrate that mutations resulting in a frameshift or stop codon in an FAD2 gene leads to higher oleic acid content in oil. In this study, two expression vectors, pDW3873 and pDW3876, were constructed using Cas9 fused to different deaminases, which were tested as tools to induce point mutations in the promoter and the coding sequences of peanut AhFAD2 genes. Both constructs harbor the single nuclease null variant, nCas9 D10A, to which the PmCDA1 cytosine deaminase was fused to the C-terminal (pDW3873) while rAPOBEC1 deaminase and an uracil glycosylase inhibitor (UGI) were fused to the N-terminal and the C-terminal respectively (pDW3876). Three gRNAs were cloned independently into both constructs and the functionality and efficiency were tested at three target sites in the AhFAD2 genes. Both constructs displayed base editing activity in which cytosine was replaced by thymine or other bases in the targeted editing window. pDW3873 showed higher efficiency compared to pDW3876 suggesting that the former is a better base editor in peanut. This is an important step forward considering introgression of existing mutations into elite varieties can take up to 15 years making this tool a benefit for peanut breeders, farmers, industry and ultimately for consumers.","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43872135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential of Genome Editing to Capture Diversity From Australian Wild Rice Relatives","authors":"Muhammad Abdullah, P. Okemo, A. Furtado, R. Henry","doi":"10.3389/fgeed.2022.875243","DOIUrl":"https://doi.org/10.3389/fgeed.2022.875243","url":null,"abstract":"Rice, a staple food worldwide and a model crop, could benefit from the introduction of novel genetics from wild relatives. Wild rice in the AA genome group closely related to domesticated rice is found across the tropical world. Due to their locality outside the range of domesticated rice, Australian wild rice populations are a potential source of unique traits for rice breeding. These rice species provide a diverse gene pool for improvement that could be utilized for desirable traits such as stress resistance, disease tolerance, and nutritional qualities. However, they remain poorly characterized. The CRISPR/Cas system has revolutionized gene editing and has improved our understanding of gene functions. Coupled with the increasing availability of genomic information on the species, genes in Australian wild rice could be modified through genome editing technologies to produce new domesticates. Alternatively, beneficial alleles from these rice species could be incorporated into cultivated rice to improve critical traits. Here, we summarize the beneficial traits in Australian wild rice, the available genomic information and the potential of gene editing to discover and understand the functions of novel alleles. Moreover, we discuss the potential domestication of these wild rice species for health and economic benefits to rice production globally.","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48479248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatiotemporal Regulation of CRISPR/Cas9 Enables Efficient, Precise, and Heritable Edits in Plant Genomes","authors":"Farhanur Rahman, Apurva Mishra, Archit Gupta, Rita Sharma","doi":"10.3389/fgeed.2022.870108","DOIUrl":"https://doi.org/10.3389/fgeed.2022.870108","url":null,"abstract":"CRISPR/Cas-mediated editing has revolutionized crop engineering. Due to the broad scope and potential of this technology, many studies have been carried out in the past decade towards optimizing genome editing constructs. Clearly, the choice of the promoter used to drive gRNA and Cas9 expression is critical to achieving high editing efficiency, precision, and heritability. While some important considerations for choosing a promoter include the number and nature of targets, host organism, mode of transformation and goal of the experiment, spatiotemporal regulation of Cas9 expression using tissue-specific or inducible promoters enables higher heritability and efficiency of targeted mutagenesis with reduced off-target effects. In this review, we discuss specific studies that highlight the prospects and trade-offs associated with the choice of promoters on genome editing and emphasize the need for inductive exploration and discovery to further advance this area of research in crop plants.","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42773879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CRISPR-Mediated Activation of αV Integrin Subtypes Promotes Neuronal Differentiation of Neuroblastoma Neuro2a Cells","authors":"Sara Riccardi, L. Cingolani, F. Jaudon","doi":"10.3389/fgeed.2022.846669","DOIUrl":"https://doi.org/10.3389/fgeed.2022.846669","url":null,"abstract":"Neuronal differentiation is a complex process whose dysfunction can lead to brain disorders. The development of new tools to target specific steps in the neuronal differentiation process is of paramount importance for a better understanding of the molecular mechanisms involved, and ultimately for developing effective therapeutic strategies for neurodevelopmental disorders. Through their interactions with extracellular matrix proteins, the cell adhesion molecules of the integrin family play essential roles in the formation of functional neuronal circuits by regulating cell migration, neurite outgrowth, dendritic spine formation and synaptic plasticity. However, how different integrin receptors contribute to the successive phases of neuronal differentiation remains to be elucidated. Here, we implemented a CRISPR activation system to enhance the endogenous expression of specific integrin subunits in an in vitro model of neuronal differentiation, the murine neuroblastoma Neuro2a cell line. By combining CRISPR activation with morphological and RT-qPCR analyses, we show that integrins of the αV family are powerful inducers of neuronal differentiation. Further, we identify a subtype-specific role for αV integrins in controlling neurite outgrowth. While αVβ3 integrin initiates neuronal differentiation of Neuro2a cells under proliferative conditions, αVβ5 integrin appears responsible for promoting a complex arborization in cells already committed to differentiation. Interestingly, primary neurons exhibit a complementary expression pattern for β3 and β5 integrin subunits during development. Our findings reveal the existence of a developmental switch between αV integrin subtypes during differentiation and suggest that a timely controlled modulation of the expression of αV integrins by CRISPRa provides a means to promote neuronal differentiation.","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44371044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Canadian Consumer Preferences Regarding Gene-Edited Food Products","authors":"Oswaldo Vasquez, Hayley Hesseln, S. Smyth","doi":"10.3389/fgeed.2022.854334","DOIUrl":"https://doi.org/10.3389/fgeed.2022.854334","url":null,"abstract":"Innovations in food production and processing have largely remained “behind the scenes” for decades. The current nature of social media and calls for increased transparency regarding food results in a new landscape where consumer product demands are more important than ever, but are increasingly based on limited, or incorrect, information. One area where consumer awareness is rapidly emerging is the area of gene-edited food products. This article uses a consumer survey to gather perceptions regarding food safety, gene editing and willingness to consume for three gene-edited food products. Four factors were found to strongly influence consumer perceptions: trust in the Canadian food safety system; food technology neophobia scores; knowledge of genetics; and self-knowledge of gene editing. The survey of 497 Canadians found that 15% identified as neophobics and 12% as neophilics. The majority of participants identified as neutral. When presented with various food values, participants indicated that nutrition, price, and taste were the three most important values. A participants’ willingness to consume gene-edited food products strongly correlated with neophobic and neophilic preferences, with neophobics unwilling to consume and neophilics being uncertain. The only food value that strongly affects consumer willingness to consume is the environmental impact of a products’ production. Canadian consumers have a moderate to high level of trust in Canada’s food safety system, but this level of trust fails to carry over to food products produced through innovative technologies; however, consumers express a higher level of trust in gene-edited technology than genetically modified technology.","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41852975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}