Editorial: Genome and transcriptome editing to understand and treat neuromuscular diseases.

IF 4.9 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Rika Maruyama, Alyson Fiorillo, Christopher Heier, Dongsheng Duan, Toshifumi Yokota
{"title":"Editorial: Genome and transcriptome editing to understand and treat neuromuscular diseases.","authors":"Rika Maruyama, Alyson Fiorillo, Christopher Heier, Dongsheng Duan, Toshifumi Yokota","doi":"10.3389/fgeed.2023.1176699","DOIUrl":null,"url":null,"abstract":"Neuromuscular diseases such as Duchenne muscular dystrophy and facioscapulohumeral muscular dystrophy are debilitating conditions that affect millions of individuals worldwide. In recent years, there has been a growing interest in the use of genome and transcriptome editing techniques to understand and treat these diseases. This Research Topic brings together four articles that highlight the latest advances in this field. The first article “A Single Transcript Knockdown-Replacement Strategy Employing 5′ UTR Secondary Structures to Precisely Titrate Rescue Protein Translation” by Millette et al., presents a new strategy for precisely titrating rescue protein translation in cases of diseases caused by coding mutations such as amyotrophic lateral sclerosis (ALS). The authors developed amodular, single-transgene expression system that allows control over translation from high-expression, ubiquitous promoters. This system uses “attenuator” sequences in the 5’UTRwhich predictably diminish the translation of the paired gene, providing wide general utility. The authors also demonstrate that this approach can be used to achieve a knockdown and rescue effect by pairing microRNA-adapted shRNAs alongside their respective replacement gene on a single transcript. They also showed that this approach can be used to replace the SOD1 gene in stable cell lines and demonstrate complete and predictable control over replacement of SOD1 by varying the strength of attenuators. This study highlights the potential utility of this approach in treating monogenic diseases caused by heterogeneous mutations. The second article “Development of Therapeutic RNA Manipulation for Muscular Dystrophy” by Saifullah et al., reviews the current state of therapeutic RNA manipulation for muscular dystrophies, specifically Duchenne muscular dystrophy (DMD). DMD is a severe monogenic disease caused by mutations in the DMD gene, leading to muscle degeneration and atrophy early in life and premature death. This article highlights the potential of oligonucleotide-based therapeutics, specifically exon skipping using antisense oligonucleotides (ASO), as a promising strategy for treating OPEN ACCESS","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"5 ","pages":"1176699"},"PeriodicalIF":4.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in genome editing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fgeed.2023.1176699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromuscular diseases such as Duchenne muscular dystrophy and facioscapulohumeral muscular dystrophy are debilitating conditions that affect millions of individuals worldwide. In recent years, there has been a growing interest in the use of genome and transcriptome editing techniques to understand and treat these diseases. This Research Topic brings together four articles that highlight the latest advances in this field. The first article “A Single Transcript Knockdown-Replacement Strategy Employing 5′ UTR Secondary Structures to Precisely Titrate Rescue Protein Translation” by Millette et al., presents a new strategy for precisely titrating rescue protein translation in cases of diseases caused by coding mutations such as amyotrophic lateral sclerosis (ALS). The authors developed amodular, single-transgene expression system that allows control over translation from high-expression, ubiquitous promoters. This system uses “attenuator” sequences in the 5’UTRwhich predictably diminish the translation of the paired gene, providing wide general utility. The authors also demonstrate that this approach can be used to achieve a knockdown and rescue effect by pairing microRNA-adapted shRNAs alongside their respective replacement gene on a single transcript. They also showed that this approach can be used to replace the SOD1 gene in stable cell lines and demonstrate complete and predictable control over replacement of SOD1 by varying the strength of attenuators. This study highlights the potential utility of this approach in treating monogenic diseases caused by heterogeneous mutations. The second article “Development of Therapeutic RNA Manipulation for Muscular Dystrophy” by Saifullah et al., reviews the current state of therapeutic RNA manipulation for muscular dystrophies, specifically Duchenne muscular dystrophy (DMD). DMD is a severe monogenic disease caused by mutations in the DMD gene, leading to muscle degeneration and atrophy early in life and premature death. This article highlights the potential of oligonucleotide-based therapeutics, specifically exon skipping using antisense oligonucleotides (ASO), as a promising strategy for treating OPEN ACCESS
编辑:基因组和转录组编辑理解和治疗神经肌肉疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信