{"title":"Use of paired Cas9-NG nickase and truncated sgRNAs for single-nucleotide microbial genome editing.","authors":"Song Hee Jeong, Ho Joung Lee, Sang Jun Lee","doi":"10.3389/fgeed.2024.1471720","DOIUrl":"10.3389/fgeed.2024.1471720","url":null,"abstract":"<p><p>The paired nickases approach, which utilizes clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) nickase and dual guide RNA, has the advantage of reducing off-target effects by being able to double the target sequence. In this study, our research utilized the Cas9-NG nickase variant to minimize PAM sequence constraints, enabling the generation of paired nicks at desired genomic loci. We performed a systematic investigation into the formation sites for double nicks and the design of donor DNA within a bacterial model system. Although we successfully identified the conditions necessary for the effective formation of double nicks <i>in vivo</i>, achieving single-nucleotide level editing directly at the target sites in the genome proved challenging. Nonetheless, our experiments revealed that efficient editing at the single-nucleotide level was achievable on target DNA sequences that are hybridized with 5'-end-truncated dual single-guide RNAs (sgRNAs). Our findings contribute to a deeper understanding of the paired nickases approach, offering a single-mismatch intolerance design strategy for accurate nucleotide editing. This strategy not only enhances the precision of genome editing but also marks a significant step forward in the development of nickase-derived genome editing technologies.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1471720"},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Making gene editing accessible in resource limited environments: recommendations to guide a first-time user.","authors":"Shivani Goolab, Janine Scholefield","doi":"10.3389/fgeed.2024.1464531","DOIUrl":"10.3389/fgeed.2024.1464531","url":null,"abstract":"<p><p>The designer nuclease, CRISPR-Cas9 system has advanced the field of genome engineering owing to its programmability and ease of use. The application of these molecular scissors for genome engineering earned the developing researchers the Nobel prize in Chemistry in the year 2020. At present, the potential of this technology to improve global challenges continues to grow exponentially. CRISPR-Cas9 shows promise in the recent advances made in the Global North such as the FDA-approved gene therapy for the treatment of sickle cell anaemia and β-thalassemia and the gene editing of porcine kidney for xenotransplantation into humans affected by end-stage kidney failure. Limited resources, low government investment with an allocation of 1% of gross domestic production to research and development including a shortage of skilled professionals and lack of knowledge may preclude the use of this revolutionary technology in the Global South where the countries involved have reduced science and technology budgets. Focusing on the practical application of genome engineering, successful genetic manipulation is not easily accomplishable and is influenced by the chromatin landscape of the target locus, guide RNA selection, the experimental design including the profiling of the gene edited cells, which impacts the overall outcome achieved. Our assessment primarily delves into economical approaches of performing efficient genome engineering to support the first-time user restricted by limited resources with the aim of democratizing the use of the technology across low- and middle-income countries. Here we provide a comprehensive overview on existing experimental techniques, the significance for target locus analysis and current pitfalls such as the underrepresentation of global genetic diversity. Several perspectives of genome engineering approaches are outlined, which can be adopted in a resource limited setting to enable a higher success rate of genome editing-based innovations in low- and middle-income countries.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1464531"},"PeriodicalIF":4.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461239/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global regulatory policies for animal biotechnology: overview, opportunities and challenges.","authors":"Diane Wray-Cahen, Eric Hallerman, Mark Tizard","doi":"10.3389/fgeed.2024.1467080","DOIUrl":"https://doi.org/10.3389/fgeed.2024.1467080","url":null,"abstract":"<p><p>Genome editing (GnEd) has the potential to provide many benefits to animal agriculture, offering a means for achieving rapid growth, disease resistance, and novel phenotypes. The technology has the potential to be useful for rapidly incorporating traits into existing selectively bred animals without the need for crossbreeding and backcrossing. Yet only four products from animals created via biotechnology, all growth-enhanced fishes, have reached commercialization and only on a limited scale. The past failure of genetically engineered (or GM) products to reach conventional producers can largely be attributed to the high cost of meeting GMO regulatory requirements. We review the history of GMO regulations internationally, noting the influence of Codex Alimentarius on the development of many existing regulatory frameworks. We highlight new regulatory approaches for GnEd organisms, first developed by Argentina, and the adoption of similar approaches by other countries. Such new regulatory approaches allow GnEd organisms that could have been developed by conventional means to be regulated under the same rules as conventional organisms and in the future is likely to enhance the opportunity for biotech animals to enter production. Treating certain GnEd products as conventional has had a large impact on the variety of biotechnological innovations successfully navigating regulatory processes. We suggest that for the full potential of GnEd technologies to be realized, enabling public policies are needed to facilitate use of GnEd as a breeding tool to incorporate new traits within existing animal breeding programs, rather than only a tool to create distinct new products.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1467080"},"PeriodicalIF":4.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Sulyman Saleem, Sultan Habibullah Khan, Aftab Ahmad, Iqrar Ahmad Rana, Zunaira Afzal Naveed, Azeem Iqbal Khan
{"title":"The 4Fs of cotton: genome editing of cotton for fiber, food, feed, and fuel to achieve zero hunger.","authors":"Muhammad Sulyman Saleem, Sultan Habibullah Khan, Aftab Ahmad, Iqrar Ahmad Rana, Zunaira Afzal Naveed, Azeem Iqbal Khan","doi":"10.3389/fgeed.2024.1401088","DOIUrl":"https://doi.org/10.3389/fgeed.2024.1401088","url":null,"abstract":"<p><p>Cotton is globally known for its high-priority cellulose-rich natural fiber. In addition to providing fiber for the textile industry, it is an important source material for edible oil, livestock feed, and fuel products. Global warming and the growing population are the major challenges to the world's agriculture and the potential risks to food security. In this context, improving output traits in cotton is necessary to achieve sustainable cotton production. During the last few years, high throughput omics techniques have aided in identifying crucial genes associated with traits of cotton fiber, seed, and plant architecture which could be targeted with more precision and efficiency through the CIRPSR/Cas-mediated genome editing technique. The various CRISPR/Cas systems such as CRISPR/Cas9, CRISPR/nCas9, and CRISPR/Cas12a have been employed to edit cotton genes associated with a wide range of traits including fiber length, flowering, leaf colour, rooting, seed oil, plant architecture, gossypol content, somatic embryogenesis, and biotic and abiotic stresses tolerance, highlighting its effectiveness in editing the cotton genome. Thus, CRISPR/Cas-mediated genome editing has emerged as a technique of choice to tailor crop phenotypes for better yield potential and environmental resilience. The review covers a comprehensive analysis of cotton phenotypic traits and their improvement with the help of the latest genome editing tools to improve fiber, food, feed, and fuel-associated genes of cotton to ensure food security.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1401088"},"PeriodicalIF":4.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiara Simoni, Elena Barbon, Andrés F Muro, Alessio Cantore
{"title":"<i>In vivo</i> liver targeted genome editing as therapeutic approach: progresses and challenges.","authors":"Chiara Simoni, Elena Barbon, Andrés F Muro, Alessio Cantore","doi":"10.3389/fgeed.2024.1458037","DOIUrl":"10.3389/fgeed.2024.1458037","url":null,"abstract":"<p><p>The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for <i>in vivo</i> gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of <i>in vivo</i> liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1458037"},"PeriodicalIF":4.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subaya Manzoor, Sajad Un Nabi, Tariq Rasool Rather, Gousia Gani, Zahoor Ahmad Mir, Ab Waheed Wani, Sajad Ali, Anshika Tyagi, Nazia Manzar
{"title":"Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production.","authors":"Subaya Manzoor, Sajad Un Nabi, Tariq Rasool Rather, Gousia Gani, Zahoor Ahmad Mir, Ab Waheed Wani, Sajad Ali, Anshika Tyagi, Nazia Manzar","doi":"10.3389/fgeed.2024.1399051","DOIUrl":"10.3389/fgeed.2024.1399051","url":null,"abstract":"<p><p>Modern agriculture has encountered several challenges in achieving constant yield stability especially due to disease outbreaks and lack of long-term disease-resistant crop cultivars. In the past, disease outbreaks in economically important crops had a major impact on food security and the economy. On the other hand climate-driven emergence of new pathovars or changes in their host specificity further poses a serious threat to sustainable agriculture. At present, chemical-based control strategies are frequently used to control microbial pathogens and pests, but they have detrimental impact on the environment and also resulted in the development of resistant phyto-pathogens. As a replacement, cultivating engineered disease-resistant crops can help to minimize the negative impact of regular pesticides on agriculture and the environment. Although traditional breeding and genetic engineering have been instrumental in crop disease improvement but they have certain limitations such as labour intensity, time consumption, and low efficiency. In this regard, genome editing has emerged as one of the potential tools for improving disease resistance in crops by targeting multiple traits with more accuracy and efficiency. For instance, genome editing techniques, such as CRISPR/Cas9, CRISPR/Cas13, base editing, TALENs, ZFNs, and meganucleases, have proved successful in improving disease resistance in crops through targeted mutagenesis, gene knockouts, knockdowns, modifications, and activation of target genes. CRISPR/Cas9 is unique among these techniques because of its remarkable efficacy, low risk of off-target repercussions, and ease of use. Some primary targets for developing CRISPR-mediated disease-resistant crops are host-susceptibility genes (the S gene method), resistance genes (R genes) and pathogen genetic material that prevents their development, broad-spectrum disease resistance. The use of genome editing methods has the potential to notably ameliorate crop disease resistance and transform agricultural practices in the future. This review highlights the impact of phyto-pathogens on agricultural productivity. Next, we discussed the tools for improving disease resistance while focusing on genome editing. We provided an update on the accomplishments of genome editing, and its potential to improve crop disease resistance against bacterial, fungal and viral pathogens in different crop systems. Finally, we highlighted the future challenges of genome editing in different crop systems for enhancing disease resistance.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1399051"},"PeriodicalIF":4.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovana Ciacci Zanella, Celeste A Snyder, Bailey L Arruda, Kristin Whitworth, Erin Green, Ravikanth Reddy Poonooru, Bhanu P Telugu, Amy L Baker
{"title":"Pigs lacking <i>TMPRSS2</i> displayed fewer lung lesions and reduced inflammatory response when infected with influenza A virus.","authors":"Giovana Ciacci Zanella, Celeste A Snyder, Bailey L Arruda, Kristin Whitworth, Erin Green, Ravikanth Reddy Poonooru, Bhanu P Telugu, Amy L Baker","doi":"10.3389/fgeed.2023.1320180","DOIUrl":"10.3389/fgeed.2023.1320180","url":null,"abstract":"<p><p>Influenza A virus (IAV) infection is initiated by hemagglutinin (HA), a glycoprotein exposed on the virion's lipid envelope that undergoes cleavage by host cell proteases to ensure membrane fusion, entry into the host cells, and completion of the viral cycle. Transmembrane protease serine S1 member 2 (TMPRSS2) is a host transmembrane protease expressed throughout the porcine airway epithelium and is purported to play a major role in the HA cleavage process, thereby influencing viral pathogenicity and tissue tropism. Pigs are natural hosts of IAV and IAV disease causes substantial economic impact on the pork industry worldwide. Previous studies in mice demonstrated that knocking out expression of <i>TMPRSS2</i> gene was safe and inhibited the spread of IAV after experimental challenge. Therefore, we hypothesized that knockout of <i>TMPRSS2</i> will prevent IAV infectivity in the swine model. We investigated this hypothesis by comparing pathogenesis of an H1N1pdm09 virus challenge in wildtype (WT) control and in <i>TMPRSS2</i> knockout (<i>TMPRSS2</i> <sup>-/-</sup>) pigs. We demonstrated that <i>TMPRSS2</i> was expressed in the respiratory tract in WT pigs with and without IAV infection. No differences in nasal viral shedding and lung lavage viral titers were observed between WT and <i>TMPRSS2</i> <sup>-/-</sup> pigs. However, the <i>TMPRSS2</i> <sup>-/-</sup> pig group had significantly less lung lesions and significant reductions in antiviral and proinflammatory cytokines in the lung. The virus titer results in our direct challenge model contradict prior studies in the murine animal model, but the reduced lung lesions and cytokine profile suggest a possible role for TMPRSS2 in the proinflammatory antiviral response. Further research is warranted to investigate the role of TMPRSS2 in swine IAV infection and disease.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"5 ","pages":"1320180"},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CRISPR-Cas9 immune-evasive hESCs are rejected following transplantation into immunocompetent mice.","authors":"Henriette Reventlow Frederiksen, Alexandra Glantz, Kåre Kryger Vøls, Søren Skov, Pernille Tveden-Nyborg, Kristine Freude, Ulrik Doehn","doi":"10.3389/fgeed.2024.1403395","DOIUrl":"10.3389/fgeed.2024.1403395","url":null,"abstract":"<p><p>Although current stem cell therapies exhibit promising potential, the extended process of employing autologous cells and the necessity for donor-host matching to avert the rejection of transplanted cells significantly limit the widespread applicability of these treatments. It would be highly advantageous to generate a pluripotent universal donor stem cell line that is immune-evasive and, therefore, not restricted by the individual's immune system, enabling unlimited application within cell replacement therapies. Before such immune-evasive stem cells can be moved forward to clinical trials, <i>in vivo</i> testing via transplantation experiments in immune-competent animals would be a favorable approach preceding preclinical testing. By using human stem cells in immune competent animals, results will be more translatable to a clinical setting, as no parts of the immune system have been altered, although in a xenogeneic setting. In this way, immune evasiveness, cell survival, and unwanted proliferative effects can be assessed before clinical trials in humans. The current study presents the generation and characterization of three human embryonic stem cell lines (hESCs) for xenogeneic transplantation in immune-competent mice. The major histocompatibility complexes I- and II-encoding genes, B2M and CIITA, have been deleted from the hESCs using CRISPR-Cas9-targeted gene replacement strategies and knockout. B2M was knocked out by the insertion of murine CD47. Human-secreted embryonic alkaline phosphatase (hSEAP) was inserted in a safe harbor site to track cells <i>in vivo.</i> The edited hESCs maintained their pluripotency, karyotypic normality, and stable expression of murine CD47 and hSEAP <i>in vitro</i>. <i>In vivo</i> transplantation of hESCs into immune-competent BALB/c mice was successfully monitored by measuring hSEAP in blood samples. Nevertheless, transplantation of immune-evasive hESCs resulted in complete rejection within 11 days, with clear immune infiltration of T-cells on day 8. Our results reveal that knockout of B2M and CIITA together with species-specific expression of CD47 are insufficient to prevent rejection in an immune-competent and xenogeneic context.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1403395"},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas De Saeger, Emma Coulembier Vandelannoote, Hojun Lee, Jihae Park, Jonas Blomme
{"title":"Genome editing in macroalgae: advances and challenges.","authors":"Jonas De Saeger, Emma Coulembier Vandelannoote, Hojun Lee, Jihae Park, Jonas Blomme","doi":"10.3389/fgeed.2024.1380682","DOIUrl":"10.3389/fgeed.2024.1380682","url":null,"abstract":"<p><p>This minireview examines the current state and challenges of genome editing in macroalgae. Despite the ecological and economic significance of this group of organisms, genome editing has seen limited applications. While CRISPR functionality has been established in two brown (<i>Ectocarpus</i> species 7 and <i>Saccharina japonica</i>) and one green seaweed (<i>Ulva prolifera</i>), these studies are limited to proof-of-concept demonstrations. All studies also (co)-targeted <i>ADENINE PHOSPHORIBOSYL TRANSFERASE</i> to enrich for mutants, due to the relatively low editing efficiencies. To advance the field, there should be a focus on advancing auxiliary technologies, particularly stable transformation, so that novel editing reagents can be screened for their efficiency. More work is also needed on understanding DNA repair in these organisms, as this is tightly linked with the editing outcomes. Developing efficient genome editing tools for macroalgae will unlock the ability to characterize their genes, which is largely uncharted terrain. Moreover, given their economic importance, genome editing will also impact breeding campaigns to develop strains that have better yields, produce more commercially valuable compounds, and show improved resilience to the impacts of global change.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1380682"},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10955705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arturo Macarrón Palacios, Patrick Korus, Bodo G C Wilkens, Najmeh Heshmatpour, Sarita R Patnaik
{"title":"Revolutionizing <i>in vivo</i> therapy with CRISPR/Cas genome editing: breakthroughs, opportunities and challenges.","authors":"Arturo Macarrón Palacios, Patrick Korus, Bodo G C Wilkens, Najmeh Heshmatpour, Sarita R Patnaik","doi":"10.3389/fgeed.2024.1342193","DOIUrl":"10.3389/fgeed.2024.1342193","url":null,"abstract":"<p><p>Genome editing using the CRISPR/Cas system has revolutionized the field of genetic engineering, offering unprecedented opportunities for therapeutic applications <i>in vivo</i>. Despite the numerous ongoing clinical trials focusing on <i>ex vivo</i> genome editing, recent studies emphasize the therapeutic promise of <i>in vivo</i> gene editing using CRISPR/Cas technology. However, it is worth noting that the complete attainment of the inherent capabilities of <i>in vivo</i> therapy in humans is yet to be accomplished. Before the full realization of <i>in vivo</i> therapeutic potential, it is crucial to achieve enhanced specificity in selectively targeting defective cells while minimizing harm to healthy cells. This review examines emerging studies, focusing on CRISPR/Cas-based pre-clinical and clinical trials for innovative therapeutic approaches for a wide range of diseases. Furthermore, we emphasize targeting cancer-specific sequences target in genes associated with tumors, shedding light on the diverse strategies employed in cancer treatment. We highlight the various challenges associated with <i>in vivo</i> CRISPR/Cas-based cancer therapy and explore their prospective clinical translatability and the strategies employed to overcome these obstacles.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1342193"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}