Frontiers in genome editing最新文献

筛选
英文 中文
Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production. 通过基因组编辑提高作物抗病性:提高农业产量的有效方法。
IF 4.9
Frontiers in genome editing Pub Date : 2024-06-26 eCollection Date: 2024-01-01 DOI: 10.3389/fgeed.2024.1399051
Subaya Manzoor, Sajad Un Nabi, Tariq Rasool Rather, Gousia Gani, Zahoor Ahmad Mir, Ab Waheed Wani, Sajad Ali, Anshika Tyagi, Nazia Manzar
{"title":"Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production.","authors":"Subaya Manzoor, Sajad Un Nabi, Tariq Rasool Rather, Gousia Gani, Zahoor Ahmad Mir, Ab Waheed Wani, Sajad Ali, Anshika Tyagi, Nazia Manzar","doi":"10.3389/fgeed.2024.1399051","DOIUrl":"10.3389/fgeed.2024.1399051","url":null,"abstract":"<p><p>Modern agriculture has encountered several challenges in achieving constant yield stability especially due to disease outbreaks and lack of long-term disease-resistant crop cultivars. In the past, disease outbreaks in economically important crops had a major impact on food security and the economy. On the other hand climate-driven emergence of new pathovars or changes in their host specificity further poses a serious threat to sustainable agriculture. At present, chemical-based control strategies are frequently used to control microbial pathogens and pests, but they have detrimental impact on the environment and also resulted in the development of resistant phyto-pathogens. As a replacement, cultivating engineered disease-resistant crops can help to minimize the negative impact of regular pesticides on agriculture and the environment. Although traditional breeding and genetic engineering have been instrumental in crop disease improvement but they have certain limitations such as labour intensity, time consumption, and low efficiency. In this regard, genome editing has emerged as one of the potential tools for improving disease resistance in crops by targeting multiple traits with more accuracy and efficiency. For instance, genome editing techniques, such as CRISPR/Cas9, CRISPR/Cas13, base editing, TALENs, ZFNs, and meganucleases, have proved successful in improving disease resistance in crops through targeted mutagenesis, gene knockouts, knockdowns, modifications, and activation of target genes. CRISPR/Cas9 is unique among these techniques because of its remarkable efficacy, low risk of off-target repercussions, and ease of use. Some primary targets for developing CRISPR-mediated disease-resistant crops are host-susceptibility genes (the S gene method), resistance genes (R genes) and pathogen genetic material that prevents their development, broad-spectrum disease resistance. The use of genome editing methods has the potential to notably ameliorate crop disease resistance and transform agricultural practices in the future. This review highlights the impact of phyto-pathogens on agricultural productivity. Next, we discussed the tools for improving disease resistance while focusing on genome editing. We provided an update on the accomplishments of genome editing, and its potential to improve crop disease resistance against bacterial, fungal and viral pathogens in different crop systems. Finally, we highlighted the future challenges of genome editing in different crop systems for enhancing disease resistance.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1399051"},"PeriodicalIF":4.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pigs lacking TMPRSS2 displayed fewer lung lesions and reduced inflammatory response when infected with influenza A virus. 缺乏 TMPRSS2 的猪在感染甲型流感病毒后,肺部病变较少,炎症反应也有所减轻。
Frontiers in genome editing Pub Date : 2024-05-31 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1320180
Giovana Ciacci Zanella, Celeste A Snyder, Bailey L Arruda, Kristin Whitworth, Erin Green, Ravikanth Reddy Poonooru, Bhanu P Telugu, Amy L Baker
{"title":"Pigs lacking <i>TMPRSS2</i> displayed fewer lung lesions and reduced inflammatory response when infected with influenza A virus.","authors":"Giovana Ciacci Zanella, Celeste A Snyder, Bailey L Arruda, Kristin Whitworth, Erin Green, Ravikanth Reddy Poonooru, Bhanu P Telugu, Amy L Baker","doi":"10.3389/fgeed.2023.1320180","DOIUrl":"10.3389/fgeed.2023.1320180","url":null,"abstract":"<p><p>Influenza A virus (IAV) infection is initiated by hemagglutinin (HA), a glycoprotein exposed on the virion's lipid envelope that undergoes cleavage by host cell proteases to ensure membrane fusion, entry into the host cells, and completion of the viral cycle. Transmembrane protease serine S1 member 2 (TMPRSS2) is a host transmembrane protease expressed throughout the porcine airway epithelium and is purported to play a major role in the HA cleavage process, thereby influencing viral pathogenicity and tissue tropism. Pigs are natural hosts of IAV and IAV disease causes substantial economic impact on the pork industry worldwide. Previous studies in mice demonstrated that knocking out expression of <i>TMPRSS2</i> gene was safe and inhibited the spread of IAV after experimental challenge. Therefore, we hypothesized that knockout of <i>TMPRSS2</i> will prevent IAV infectivity in the swine model. We investigated this hypothesis by comparing pathogenesis of an H1N1pdm09 virus challenge in wildtype (WT) control and in <i>TMPRSS2</i> knockout (<i>TMPRSS2</i> <sup>-/-</sup>) pigs. We demonstrated that <i>TMPRSS2</i> was expressed in the respiratory tract in WT pigs with and without IAV infection. No differences in nasal viral shedding and lung lavage viral titers were observed between WT and <i>TMPRSS2</i> <sup>-/-</sup> pigs. However, the <i>TMPRSS2</i> <sup>-/-</sup> pig group had significantly less lung lesions and significant reductions in antiviral and proinflammatory cytokines in the lung. The virus titer results in our direct challenge model contradict prior studies in the murine animal model, but the reduced lung lesions and cytokine profile suggest a possible role for TMPRSS2 in the proinflammatory antiviral response. Further research is warranted to investigate the role of TMPRSS2 in swine IAV infection and disease.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"5 ","pages":"1320180"},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR-Cas9 immune-evasive hESCs are rejected following transplantation into immunocompetent mice. CRISPR-Cas9 免疫侵袭性 hESC 移植到免疫功能健全的小鼠体内后会发生排斥反应。
Frontiers in genome editing Pub Date : 2024-05-28 eCollection Date: 2024-01-01 DOI: 10.3389/fgeed.2024.1403395
Henriette Reventlow Frederiksen, Alexandra Glantz, Kåre Kryger Vøls, Søren Skov, Pernille Tveden-Nyborg, Kristine Freude, Ulrik Doehn
{"title":"CRISPR-Cas9 immune-evasive hESCs are rejected following transplantation into immunocompetent mice.","authors":"Henriette Reventlow Frederiksen, Alexandra Glantz, Kåre Kryger Vøls, Søren Skov, Pernille Tveden-Nyborg, Kristine Freude, Ulrik Doehn","doi":"10.3389/fgeed.2024.1403395","DOIUrl":"10.3389/fgeed.2024.1403395","url":null,"abstract":"<p><p>Although current stem cell therapies exhibit promising potential, the extended process of employing autologous cells and the necessity for donor-host matching to avert the rejection of transplanted cells significantly limit the widespread applicability of these treatments. It would be highly advantageous to generate a pluripotent universal donor stem cell line that is immune-evasive and, therefore, not restricted by the individual's immune system, enabling unlimited application within cell replacement therapies. Before such immune-evasive stem cells can be moved forward to clinical trials, <i>in vivo</i> testing via transplantation experiments in immune-competent animals would be a favorable approach preceding preclinical testing. By using human stem cells in immune competent animals, results will be more translatable to a clinical setting, as no parts of the immune system have been altered, although in a xenogeneic setting. In this way, immune evasiveness, cell survival, and unwanted proliferative effects can be assessed before clinical trials in humans. The current study presents the generation and characterization of three human embryonic stem cell lines (hESCs) for xenogeneic transplantation in immune-competent mice. The major histocompatibility complexes I- and II-encoding genes, B2M and CIITA, have been deleted from the hESCs using CRISPR-Cas9-targeted gene replacement strategies and knockout. B2M was knocked out by the insertion of murine CD47. Human-secreted embryonic alkaline phosphatase (hSEAP) was inserted in a safe harbor site to track cells <i>in vivo.</i> The edited hESCs maintained their pluripotency, karyotypic normality, and stable expression of murine CD47 and hSEAP <i>in vitro</i>. <i>In vivo</i> transplantation of hESCs into immune-competent BALB/c mice was successfully monitored by measuring hSEAP in blood samples. Nevertheless, transplantation of immune-evasive hESCs resulted in complete rejection within 11 days, with clear immune infiltration of T-cells on day 8. Our results reveal that knockout of B2M and CIITA together with species-specific expression of CD47 are insufficient to prevent rejection in an immune-competent and xenogeneic context.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1403395"},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome editing in macroalgae: advances and challenges. 大型藻类的基因组编辑:进展与挑战。
Frontiers in genome editing Pub Date : 2024-03-06 eCollection Date: 2024-01-01 DOI: 10.3389/fgeed.2024.1380682
Jonas De Saeger, Emma Coulembier Vandelannoote, Hojun Lee, Jihae Park, Jonas Blomme
{"title":"Genome editing in macroalgae: advances and challenges.","authors":"Jonas De Saeger, Emma Coulembier Vandelannoote, Hojun Lee, Jihae Park, Jonas Blomme","doi":"10.3389/fgeed.2024.1380682","DOIUrl":"10.3389/fgeed.2024.1380682","url":null,"abstract":"<p><p>This minireview examines the current state and challenges of genome editing in macroalgae. Despite the ecological and economic significance of this group of organisms, genome editing has seen limited applications. While CRISPR functionality has been established in two brown (<i>Ectocarpus</i> species 7 and <i>Saccharina japonica</i>) and one green seaweed (<i>Ulva prolifera</i>), these studies are limited to proof-of-concept demonstrations. All studies also (co)-targeted <i>ADENINE PHOSPHORIBOSYL TRANSFERASE</i> to enrich for mutants, due to the relatively low editing efficiencies. To advance the field, there should be a focus on advancing auxiliary technologies, particularly stable transformation, so that novel editing reagents can be screened for their efficiency. More work is also needed on understanding DNA repair in these organisms, as this is tightly linked with the editing outcomes. Developing efficient genome editing tools for macroalgae will unlock the ability to characterize their genes, which is largely uncharted terrain. Moreover, given their economic importance, genome editing will also impact breeding campaigns to develop strains that have better yields, produce more commercially valuable compounds, and show improved resilience to the impacts of global change.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1380682"},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10955705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing in vivo therapy with CRISPR/Cas genome editing: breakthroughs, opportunities and challenges. 利用 CRISPR/Cas 基因组编辑技术革新体内治疗:突破、机遇与挑战。
Frontiers in genome editing Pub Date : 2024-02-01 eCollection Date: 2024-01-01 DOI: 10.3389/fgeed.2024.1342193
Arturo Macarrón Palacios, Patrick Korus, Bodo G C Wilkens, Najmeh Heshmatpour, Sarita R Patnaik
{"title":"Revolutionizing <i>in vivo</i> therapy with CRISPR/Cas genome editing: breakthroughs, opportunities and challenges.","authors":"Arturo Macarrón Palacios, Patrick Korus, Bodo G C Wilkens, Najmeh Heshmatpour, Sarita R Patnaik","doi":"10.3389/fgeed.2024.1342193","DOIUrl":"10.3389/fgeed.2024.1342193","url":null,"abstract":"<p><p>Genome editing using the CRISPR/Cas system has revolutionized the field of genetic engineering, offering unprecedented opportunities for therapeutic applications <i>in vivo</i>. Despite the numerous ongoing clinical trials focusing on <i>ex vivo</i> genome editing, recent studies emphasize the therapeutic promise of <i>in vivo</i> gene editing using CRISPR/Cas technology. However, it is worth noting that the complete attainment of the inherent capabilities of <i>in vivo</i> therapy in humans is yet to be accomplished. Before the full realization of <i>in vivo</i> therapeutic potential, it is crucial to achieve enhanced specificity in selectively targeting defective cells while minimizing harm to healthy cells. This review examines emerging studies, focusing on CRISPR/Cas-based pre-clinical and clinical trials for innovative therapeutic approaches for a wide range of diseases. Furthermore, we emphasize targeting cancer-specific sequences target in genes associated with tumors, shedding light on the diverse strategies employed in cancer treatment. We highlight the various challenges associated with <i>in vivo</i> CRISPR/Cas-based cancer therapy and explore their prospective clinical translatability and the strategies employed to overcome these obstacles.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1342193"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational analysis of cas proteins unlocks new potential in HIV-1 targeted gene therapy 对 Cas 蛋白的计算分析为 HIV-1 靶向基因疗法释放出新潜力
Frontiers in genome editing Pub Date : 2024-01-04 DOI: 10.3389/fgeed.2023.1248982
W. Dampier, Rachel Berman, M. Nonnemacher, B. Wigdahl
{"title":"Computational analysis of cas proteins unlocks new potential in HIV-1 targeted gene therapy","authors":"W. Dampier, Rachel Berman, M. Nonnemacher, B. Wigdahl","doi":"10.3389/fgeed.2023.1248982","DOIUrl":"https://doi.org/10.3389/fgeed.2023.1248982","url":null,"abstract":"Introduction: The human immunodeficiency virus type 1 (HIV-1) pandemic has been slowed with the advent of anti-retroviral therapy (ART). However, ART is not a cure and as such has pushed the disease into a chronic infection. One potential cure strategy that has shown promise is the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing system. It has recently been shown to successfully edit and/or excise the integrated provirus from infected cells and inhibit HIV-1 in vitro, ex vivo, and in vivo. These studies have primarily been conducted with SpCas9 or SaCas9. However, additional Cas proteins are discovered regularly and modifications to these known proteins are being engineered. The alternative Cas molecules have different requirements for protospacer adjacent motifs (PAMs) which impact the possible targetable regions of HIV-1. Other modifications to the Cas protein or gRNA handle impact the tolerance for mismatches between gRNA and the target. While reducing off-target risk, this impacts the ability to fully account for HIV-1 genetic variability.Methods: This manuscript strives to examine these parameter choices using a computational approach for surveying the suitability of a Cas editor for HIV-1 gene editing. The Nominate, Diversify, Narrow, Filter (NDNF) pipeline measures the safety, broadness, and effectiveness of a pool of potential gRNAs for any PAM. This technique was used to evaluate 46 different potential Cas editors for their HIV therapeutic potential.Results: Our examination revealed that broader PAMs that improve the targeting potential of editors like SaCas9 and LbCas12a have larger pools of useful gRNAs, while broader PAMs reduced the pool of useful SpCas9 gRNAs yet increased the breadth of targetable locations. Investigation of the mismatch tolerance of Cas editors indicates a 2-missmatch tolerance is an ideal balance between on-target sensitivity and off-target specificity. Of all of the Cas editors examined, SpCas-NG and SPRY-Cas9 had the highest number of overall safe, broad, and effective gRNAs against HIV.Discussion: Currently, larger proteins and wider PAMs lead to better targeting capacity. This implies that research should either be targeted towards delivering longer payloads or towards increasing the breadth of currently available small Cas editors. With the discovery and adoption of additional Cas editors, it is important for researchers in the HIV-1 gene editing field to explore the wider world of Cas editors.","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"60 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What do people think about genetic engineering? A systematic review of questionnaire surveys before and after the introduction of CRISPR 人们如何看待基因工程?对CRISPR问世前后问卷调查的系统回顾
Frontiers in genome editing Pub Date : 2023-12-19 DOI: 10.3389/fgeed.2023.1284547
Pedro Dias Ramos, Maria Strecht Almeida, Ingrid Anna Sofia Olsson
{"title":"What do people think about genetic engineering? A systematic review of questionnaire surveys before and after the introduction of CRISPR","authors":"Pedro Dias Ramos, Maria Strecht Almeida, Ingrid Anna Sofia Olsson","doi":"10.3389/fgeed.2023.1284547","DOIUrl":"https://doi.org/10.3389/fgeed.2023.1284547","url":null,"abstract":"The advent of CRISPR-Cas9 in 2012 started revolutionizing the field of genetics by broadening the access to a method for precise modification of the human genome. It also brought renewed attention to the ethical issues of genetic modification and the societal acceptance of technology for this purpose. So far, many surveys assessing public attitudes toward genetic modification have been conducted worldwide. Here, we present the results of a systematic review of primary publications of surveys addressing public attitudes toward genetic modification as well as the awareness and knowledge about the technology required for genetic modification. A total of 53 primary publications (1987–2020) focusing on applications in humans and non-human animals were identified, covering countries in four continents. Of the 53 studies, 30 studies from until and including 2012 (pre-CRISPR) address gene therapy in humans and genetic modification of animals for food production and biomedical research. The remaining 23 studies from after 2013 (CRISPR) address gene editing in humans and animals. Across countries, respondents see gene therapy for disease treatment or prevention in humans as desirable and highly acceptable, whereas enhancement is generally met with opposition. When the study distinguishes between somatic and germline applications, somatic gene editing is generally accepted, whereas germline applications are met with ambivalence. The purpose of the application is also important for assessing attitudes toward genetically modified animals: modification in food production is much less accepted than for biomedical application in pre-CRISPR studies. A relationship between knowledge/awareness and attitude toward genetic modification is often present. A critical appraisal of methodology quality in the primary publications with regards to sampling and questionnaire design, development, and administration shows that there is considerable scope for improvement in the reporting of methodological detail. Lack of information is more common in earlier studies, which probably reflects the changing practice in the field.","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"28 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139172450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity of transgene integration and gene-editing events in wheat (Triticum aestivum L.) transgenic plants generated using Agrobacterium-mediated transformation. 利用农杆菌介导转化产生的小麦(Triticum aestivum L.)转基因植株中转基因整合和基因编辑事件的多样性。
Frontiers in genome editing Pub Date : 2023-12-19 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1265103
Louie Cris Lopos, Natalia V Bykova, Janeen Robinson, Susan Brown, Kerry Ward, Andriy Bilichak
{"title":"Diversity of transgene integration and gene-editing events in wheat (<i>Triticum aestivum</i> L.) transgenic plants generated using <i>Agrobacterium</i>-mediated transformation.","authors":"Louie Cris Lopos, Natalia V Bykova, Janeen Robinson, Susan Brown, Kerry Ward, Andriy Bilichak","doi":"10.3389/fgeed.2023.1265103","DOIUrl":"https://doi.org/10.3389/fgeed.2023.1265103","url":null,"abstract":"<p><p>Improvement in agronomic traits in crops through gene editing (GE) relies on efficient transformation protocols for delivering the CRISPR/Cas9-coded transgenes. Recently, a few embryogenesis-related genes have been described, the co-delivery of which significantly increases the transformation efficiency with reduced genotype-dependency. Here, we characterized the transgenic and GE events in wheat (cv. Fielder) when transformed with <i>GROWTH-REGULATING FACTOR 4</i> (<i>GRF4</i>) and its cofactor <i>GRF-INTERACTING FACTOR 1</i> (<i>GIF1</i>) chimeric gene. Transformation efficiency in our experiments ranged from 22% to 68%, and the editing events were faithfully propagated into the following generation. Both low- and high-copy-number integration events were recovered in the T<sub>0</sub> population with various levels of integrity of the left and right T-DNA borders. We also generated a population of wheat plants with 10 different gRNAs targeting 30 loci in the genome. A comparison of the epigenetic profiles at the target sites and editing efficiency revealed a significant positive correlation between chromatin accessibility and mutagenesis rate. Overall, the preliminary screening of transgene quality and GE events in the T<sub>0</sub> population of plants regenerated through the co-delivery of <i>GRF-GIF</i> can allow for the propagation of the best candidates for further phenotypic analysis.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"5 ","pages":"1265103"},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139405435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enabling genome editing in tropical maize lines through an improved, morphogenic regulator-assisted transformation protocol 通过改进的形态发生调节剂辅助转化协议实现热带玉米品系的基因组编辑
Frontiers in genome editing Pub Date : 2023-12-07 DOI: 10.3389/fgeed.2023.1241035
José Hernandes-Lopes, Maísa Siqueira Pinto, Letícia Rios Vieira, Patrícia Brant Monteiro, Sophia V. Gerasimova, Juliana Vieira Almeida Nonato, Maria Helena Faustinoni Bruno, Alexander Vikhorev, Fernanda Rausch-Fernandes, I. Gerhardt, L. Pauwels, Paulo Arruda, R. A. Dante, J. Yassitepe
{"title":"Enabling genome editing in tropical maize lines through an improved, morphogenic regulator-assisted transformation protocol","authors":"José Hernandes-Lopes, Maísa Siqueira Pinto, Letícia Rios Vieira, Patrícia Brant Monteiro, Sophia V. Gerasimova, Juliana Vieira Almeida Nonato, Maria Helena Faustinoni Bruno, Alexander Vikhorev, Fernanda Rausch-Fernandes, I. Gerhardt, L. Pauwels, Paulo Arruda, R. A. Dante, J. Yassitepe","doi":"10.3389/fgeed.2023.1241035","DOIUrl":"https://doi.org/10.3389/fgeed.2023.1241035","url":null,"abstract":"The recalcitrance exhibited by many maize (Zea mays) genotypes to traditional genetic transformation protocols poses a significant challenge to the large-scale application of genome editing (GE) in this major crop species. Although a few maize genotypes are widely used for genetic transformation, they prove unsuitable for agronomic tests in field trials or commercial applications. This challenge is exacerbated by the predominance of transformable maize lines adapted to temperate geographies, despite a considerable proportion of maize production occurring in the tropics. Ectopic expression of morphogenic regulators (MRs) stands out as a promising approach to overcome low efficiency and genotype dependency, aiming to achieve ’universal’ transformation and GE capabilities in maize. Here, we report the successful GE of agronomically relevant tropical maize lines using a MR-based, Agrobacterium-mediated transformation protocol previously optimized for the B104 temperate inbred line. To this end, we used a CRISPR/Cas9-based construct aiming at the knockout of the VIRESCENT YELLOW-LIKE (VYL) gene, which results in an easily recognizable phenotype. Mutations at VYL were verified in protoplasts prepared from B104 and three tropical lines, regardless of the presence of a single nucleotide polymorphism (SNP) at the seed region of the VYL target site in two of the tropical lines. Three out of five tropical lines were amenable to transformation, with efficiencies reaching up to 6.63%. Remarkably, 97% of the recovered events presented indels at the target site, which were inherited by the next generation. We observed off-target activity of the CRISPR/Cas9-based construct towards the VYL paralog VYL-MODIFIER, which could be partly due to the expression of the WUSCHEL (WUS) MR. Our results demonstrate efficient GE of relevant tropical maize lines, expanding the current availability of GE-amenable genotypes of this major crop.","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"14 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138591509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in gene editing tools, implications and success in plants: a review 基因编辑工具的进展、影响和在植物中的成功:综述
Frontiers in genome editing Pub Date : 2023-12-07 DOI: 10.3389/fgeed.2023.1272678
Suman Jyoti Bhuyan, Manoj Kumar, Pandurang Ramrao Devde, A. C. Rai, Amit Kumar Mishra, Prashant Kumar Singh, K. Siddique
{"title":"Progress in gene editing tools, implications and success in plants: a review","authors":"Suman Jyoti Bhuyan, Manoj Kumar, Pandurang Ramrao Devde, A. C. Rai, Amit Kumar Mishra, Prashant Kumar Singh, K. Siddique","doi":"10.3389/fgeed.2023.1272678","DOIUrl":"https://doi.org/10.3389/fgeed.2023.1272678","url":null,"abstract":"Genetic modifications are made through diverse mutagenesis techniques for crop improvement programs. Among these mutagenesis tools, the traditional methods involve chemical and radiation-induced mutagenesis, resulting in off-target and unintended mutations in the genome. However, recent advances have introduced site-directed nucleases (SDNs) for gene editing, significantly reducing off-target changes in the genome compared to induced mutagenesis and naturally occurring mutations in breeding populations. SDNs have revolutionized genetic engineering, enabling precise gene editing in recent decades. One widely used method, homology-directed repair (HDR), has been effective for accurate base substitution and gene alterations in some plant species. However, its application has been limited due to the inefficiency of HDR in plant cells and the prevalence of the error-prone repair pathway known as non-homologous end joining (NHEJ). The discovery of CRISPR-Cas has been a game-changer in this field. This system induces mutations by creating double-strand breaks (DSBs) in the genome and repairing them through associated repair pathways like NHEJ. As a result, the CRISPR-Cas system has been extensively used to transform plants for gene function analysis and to enhance desirable traits. Researchers have made significant progress in genetic engineering in recent years, particularly in understanding the CRISPR-Cas mechanism. This has led to various CRISPR-Cas variants, including CRISPR-Cas13, CRISPR interference, CRISPR activation, base editors, primes editors, and CRASPASE, a new CRISPR-Cas system for genetic engineering that cleaves proteins. Moreover, gene editing technologies like the prime editor and base editor approaches offer excellent opportunities for plant genome engineering. These cutting-edge tools have opened up new avenues for rapidly manipulating plant genomes. This review article provides a comprehensive overview of the current state of plant genetic engineering, focusing on recently developed tools for gene alteration and their potential applications in plant research.","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"77 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138983763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信