{"title":"DNA-free CRISPR genome editing in raspberry (<i>Rubus idaeus</i>) protoplast through RNP-mediated transfection.","authors":"Ryan Creeth, Andrew Thompson, Zoltan Kevei","doi":"10.3389/fgeed.2025.1589431","DOIUrl":null,"url":null,"abstract":"<p><p>Protoplast-based systems have been utilised in a wide variety of plant species to enable genome editing without chromosomal introgression of foreign DNA into plant genomes. DNA-free genome editing followed by protoplast regeneration allows elite cultivars to be edited without further genetic segregation, preserving their unique genetic composition and their regulatory status as non-transgenic. However, protoplast isolation presents a barrier to the development of advanced breeding technologies in raspberry and no protocol has been published for DNA-free genome editing in the species. Pre-assembled ribonucleoprotein complexes (RNPs) do not require cellular processing and the commercial availability of Cas9 proteins and synthetic guide RNAs has streamlined genome editing protocols. This study presents a novel high-yielding protoplast isolation protocol from raspberry stem cultures and RNP-mediated transfection of protoplast with CRISPR-Cas9. Targeted mutagenesis of the phytoene desaturase gene at two intragenic loci resulted in an editing efficiency of 19%, though estimated efficiency varied depending on the indel analysis technique. Only amplicon sequencing was sensitive enough to confirm genome editing in a low efficiency sample. To our knowledge, this study constitutes the first use of DNA-free genome editing in raspberry protoplast. This protocol provides a valuable platform for understanding gene function and facilitates the future development of precision breeding in this important soft fruit crop.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"7 ","pages":"1589431"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256493/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in genome editing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fgeed.2025.1589431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protoplast-based systems have been utilised in a wide variety of plant species to enable genome editing without chromosomal introgression of foreign DNA into plant genomes. DNA-free genome editing followed by protoplast regeneration allows elite cultivars to be edited without further genetic segregation, preserving their unique genetic composition and their regulatory status as non-transgenic. However, protoplast isolation presents a barrier to the development of advanced breeding technologies in raspberry and no protocol has been published for DNA-free genome editing in the species. Pre-assembled ribonucleoprotein complexes (RNPs) do not require cellular processing and the commercial availability of Cas9 proteins and synthetic guide RNAs has streamlined genome editing protocols. This study presents a novel high-yielding protoplast isolation protocol from raspberry stem cultures and RNP-mediated transfection of protoplast with CRISPR-Cas9. Targeted mutagenesis of the phytoene desaturase gene at two intragenic loci resulted in an editing efficiency of 19%, though estimated efficiency varied depending on the indel analysis technique. Only amplicon sequencing was sensitive enough to confirm genome editing in a low efficiency sample. To our knowledge, this study constitutes the first use of DNA-free genome editing in raspberry protoplast. This protocol provides a valuable platform for understanding gene function and facilitates the future development of precision breeding in this important soft fruit crop.