Frontiers in bioinformatics最新文献

筛选
英文 中文
Where are we in the implementation of tissue-specific epigenetic clocks? 组织特异性表观遗传时钟的实施进展如何?
Frontiers in bioinformatics Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1306244
Claudia Sala, Pietro Di Lena, Danielle Fernandes Durso, Italo Faria do Valle, Maria Giulia Bacalini, Daniele Dall'Olio, Claudio Franceschi, Gastone Castellani, Paolo Garagnani, Christine Nardini
{"title":"Where are we in the implementation of tissue-specific epigenetic clocks?","authors":"Claudia Sala, Pietro Di Lena, Danielle Fernandes Durso, Italo Faria do Valle, Maria Giulia Bacalini, Daniele Dall'Olio, Claudio Franceschi, Gastone Castellani, Paolo Garagnani, Christine Nardini","doi":"10.3389/fbinf.2024.1306244","DOIUrl":"10.3389/fbinf.2024.1306244","url":null,"abstract":"<p><p><b>Introduction:</b> DNA methylation clocks presents advantageous characteristics with respect to the ambitious goal of identifying very early markers of disease, based on the concept that accelerated ageing is a reliable predictor in this sense. <b>Methods:</b> Such tools, being epigenomic based, are expected to be conditioned by sex and tissue specificities, and this work is about quantifying this dependency as well as that from the regression model and the size of the training set. <b>Results:</b> Our quantitative results indicate that elastic-net penalization is the best performing strategy, and better so when-unsurprisingly-the data set is bigger; sex does not appear to condition clocks performances and tissue specific clocks appear to perform better than generic blood clocks. Finally, when considering all trained clocks, we identified a subset of genes that, to the best of our knowledge, have not been presented yet and might deserve further investigation: CPT1A, MMP15, SHROOM3, SLIT3, and SYNGR. <b>Conclusion:</b> These factual starting points can be useful for the future medical translation of clocks and in particular in the debate between multi-tissue clocks, generally trained on a large majority of blood samples, and tissue-specific clocks.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1306244"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational identification of antibody-binding epitopes from mimotope datasets. 从拟态数据集计算识别抗体结合表位。
Frontiers in bioinformatics Pub Date : 2024-02-23 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1295972
Rang Li, Sabrina Wilderotter, Madison Stoddard, Debra Van Egeren, Arijit Chakravarty, Diane Joseph-McCarthy
{"title":"Computational identification of antibody-binding epitopes from mimotope datasets.","authors":"Rang Li, Sabrina Wilderotter, Madison Stoddard, Debra Van Egeren, Arijit Chakravarty, Diane Joseph-McCarthy","doi":"10.3389/fbinf.2024.1295972","DOIUrl":"10.3389/fbinf.2024.1295972","url":null,"abstract":"<p><p><b>Introduction:</b> A fundamental challenge in computational vaccinology is that most B-cell epitopes are conformational and therefore hard to predict from sequence alone. Another significant challenge is that a great deal of the amino acid sequence of a viral surface protein might not in fact be antigenic. Thus, identifying the regions of a protein that are most promising for vaccine design based on the degree of surface exposure may not lead to a clinically relevant immune response. <b>Methods:</b> Linear peptides selected by phage display experiments that have high affinity to the monoclonal antibody of interest (\"mimotopes\") usually have similar physicochemical properties to the antigen epitope corresponding to that antibody. The sequences of these linear peptides can be used to find possible epitopes on the surface of the antigen structure or a homology model of the antigen in the absence of an antigen-antibody complex structure. <b>Results and Discussion:</b> Herein we describe two novel methods for mapping mimotopes to epitopes. The first is a novel algorithm named MimoTree that allows for gaps in the mimotopes and epitopes on the antigen. More specifically, a mimotope may have a gap that does not match to the epitope to allow it to adopt a conformation relevant for binding to an antibody, and residues may similarly be discontinuous in conformational epitopes. MimoTree is a fully automated epitope detection algorithm suitable for the identification of conformational as well as linear epitopes. The second is an ensemble approach, which combines the prediction results from MimoTree and two existing methods.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1295972"},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limits of experimental evidence in RNA secondary structure prediction. RNA 二级结构预测中实验证据的局限性。
IF 2.8
Frontiers in bioinformatics Pub Date : 2024-02-22 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1346779
Sarah von Löhneysen, Mario Mörl, Peter F Stadler
{"title":"Limits of experimental evidence in RNA secondary structure prediction.","authors":"Sarah von Löhneysen, Mario Mörl, Peter F Stadler","doi":"10.3389/fbinf.2024.1346779","DOIUrl":"10.3389/fbinf.2024.1346779","url":null,"abstract":"","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1346779"},"PeriodicalIF":2.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Posterior inference of Hi-C contact frequency through sampling. 通过抽样对 Hi-C 接触频率进行后验推断。
Frontiers in bioinformatics Pub Date : 2024-02-22 eCollection Date: 2023-01-01 DOI: 10.3389/fbinf.2023.1285828
Yanlin Zhang, Christopher J F Cameron, Mathieu Blanchette
{"title":"Posterior inference of Hi-C contact frequency through sampling.","authors":"Yanlin Zhang, Christopher J F Cameron, Mathieu Blanchette","doi":"10.3389/fbinf.2023.1285828","DOIUrl":"10.3389/fbinf.2023.1285828","url":null,"abstract":"<p><p>Hi-C is one of the most widely used approaches to study three-dimensional genome conformations. Contacts captured by a Hi-C experiment are represented in a contact frequency matrix. Due to the limited sequencing depth and other factors, Hi-C contact frequency matrices are only approximations of the true interaction frequencies and are further reported without any quantification of uncertainty. Hence, downstream analyses based on Hi-C contact maps (e.g., TAD and loop annotation) are themselves point estimations. Here, we present the Hi-C interaction frequency sampler (HiCSampler) that reliably infers the posterior distribution of the interaction frequency for a given Hi-C contact map by exploiting dependencies between neighboring loci. Posterior predictive checks demonstrate that HiCSampler can infer highly predictive chromosomal interaction frequency. Summary statistics calculated by HiCSampler provide a measurement of the uncertainty for Hi-C experiments, and samples inferred by HiCSampler are ready for use by most downstream analysis tools off the shelf and permit uncertainty measurements in these analyses without modifications.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"3 ","pages":"1285828"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making bioinformatics training FAIR: the EMBL-EBI training portal. 使生物信息学培训 FAIR:EMBL-EBI 培训门户网站。
Frontiers in bioinformatics Pub Date : 2024-01-31 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1347168
A L Swan, A Broadbent, P Singh Gaur, A Mishra, K Gurwitz, A Mithani, S L Morgan, G Malhotra, C Brooksbank
{"title":"Making bioinformatics training FAIR: the EMBL-EBI training portal.","authors":"A L Swan, A Broadbent, P Singh Gaur, A Mishra, K Gurwitz, A Mithani, S L Morgan, G Malhotra, C Brooksbank","doi":"10.3389/fbinf.2024.1347168","DOIUrl":"10.3389/fbinf.2024.1347168","url":null,"abstract":"<p><p>EMBL-EBI provides a broad range of training in data-driven life sciences. To improve awareness and access to training course listings and to make digital learning materials findable and simple to use, the EMBL-EBI Training website, www.ebi.ac.uk/training, was redesigned and restructured. To provide a framework for the redesign of the website, the FAIR (findable, accessible, interoperable, reusable) principles were applied to both the listings of live training courses and the presentation of on-demand training content. Each of the FAIR principles guided decisions on the choice of technology used to develop the website, including the details provided about training and the way in which training was presented. Since its release the openly accessible website has been accessed by an average of 58,492 users a month. There have also been over 12,000 unique users creating accounts since the functionality was added in March 2022, allowing these users to track their learning and record completion of training. Development of the website was completed using the Agile Scrum project management methodology and a focus on user experience. This framework continues to be used now that the website is live for the maintenance and improvement of the website, as feedback continues to be collected and further ways to make training FAIR are identified. Here, we describe the process of making EMBL-EBI's training FAIR through the development of a new website and our experience of implementing Agile Scrum.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1347168"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic computational hunting for small RNAs derived from ncRNAs during dengue virus infection in endothelial HMEC-1 cells. 在内皮 HMEC-1 细胞感染登革热病毒过程中,通过系统计算寻找 ncRNAs 衍生的小 RNAs。
Frontiers in bioinformatics Pub Date : 2024-01-31 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1293412
Aimer Gutierrez-Diaz, Steve Hoffmann, Juan Carlos Gallego-Gómez, Clara Isabel Bermudez-Santana
{"title":"Systematic computational hunting for small RNAs derived from ncRNAs during dengue virus infection in endothelial HMEC-1 cells.","authors":"Aimer Gutierrez-Diaz, Steve Hoffmann, Juan Carlos Gallego-Gómez, Clara Isabel Bermudez-Santana","doi":"10.3389/fbinf.2024.1293412","DOIUrl":"10.3389/fbinf.2024.1293412","url":null,"abstract":"<p><p>In recent years, a population of small RNA fragments derived from non-coding RNAs (sfd-RNAs) has gained significant interest due to its functional and structural resemblance to miRNAs, adding another level of complexity to our comprehension of small-RNA-mediated gene regulation. Despite this, scientists need more tools to test the differential expression of sfd-RNAs since the current methods to detect miRNAs may not be directly applied to them. The primary reasons are the lack of accurate small RNA and ncRNA annotation, the multi-mapping read (MMR) placement, and the multicopy nature of ncRNAs in the human genome. To solve these issues, a methodology that allows the detection of differentially expressed sfd-RNAs, including canonical miRNAs, by using an integrated copy-number-corrected ncRNA annotation was implemented. This approach was coupled with sixteen different computational strategies composed of combinations of four aligners and four normalization methods to provide a rank-order of prediction for each differentially expressed sfd-RNA. By systematically addressing the three main problems, we could detect differentially expressed miRNAs and sfd-RNAs in dengue virus-infected human dermal microvascular endothelial cells. Although more biological evaluations are required, two molecular targets of the hsa-mir-103a and hsa-mir-494 (CDK5 and PI3/AKT) appear relevant for dengue virus (DENV) infections. Here, we performed a comprehensive annotation and differential expression analysis, which can be applied in other studies addressing the role of small fragment RNA populations derived from ncRNAs in virus infection.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1293412"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864640/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A breast cancer-specific combinational QSAR model development using machine learning and deep learning approaches. 利用机器学习和深度学习方法开发乳腺癌特异性组合 QSAR 模型。
IF 2.8
Frontiers in bioinformatics Pub Date : 2024-01-15 eCollection Date: 2023-01-01 DOI: 10.3389/fbinf.2023.1328262
Anush Karampuri, Shyam Perugu
{"title":"A breast cancer-specific combinational QSAR model development using machine learning and deep learning approaches.","authors":"Anush Karampuri, Shyam Perugu","doi":"10.3389/fbinf.2023.1328262","DOIUrl":"10.3389/fbinf.2023.1328262","url":null,"abstract":"<p><p>Breast cancer is the most prevalent and heterogeneous form of cancer affecting women worldwide. Various therapeutic strategies are in practice based on the extent of disease spread, such as surgery, chemotherapy, radiotherapy, and immunotherapy. Combinational therapy is another strategy that has proven to be effective in controlling cancer progression. Administration of Anchor drug, a well-established primary therapeutic agent with known efficacy for specific targets, with Library drug, a supplementary drug to enhance the efficacy of anchor drugs and broaden the therapeutic approach. Our work focused on harnessing regression-based Machine learning (ML) and deep learning (DL) algorithms to develop a structure-activity relationship between the molecular descriptors of drug pairs and their combined biological activity through a QSAR (Quantitative structure-activity relationship) model. 11 popularly known machine learning and deep learning algorithms were used to develop QSAR models. A total of 52 breast cancer cell lines, 25 anchor drugs, and 51 library drugs were considered in developing the QSAR model. It was observed that Deep Neural Networks (DNNs) achieved an impressive R<sup>2</sup> (Coefficient of Determination) of 0.94, with an RMSE (Root Mean Square Error) value of 0.255, making it the most effective algorithm for developing a structure-activity relationship with strong generalization capabilities. In conclusion, applying combinational therapy alongside ML and DL techniques represents a promising approach to combating breast cancer.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"3 ","pages":"1328262"},"PeriodicalIF":2.8,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139577087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BPAGS: a web application for bacteriocin prediction via feature evaluation using alternating decision tree, genetic algorithm, and linear support vector classifier BPAGS:利用交替决策树、遗传算法和线性支持向量分类器,通过特征评估进行细菌素预测的网络应用程序
Frontiers in bioinformatics Pub Date : 2024-01-10 DOI: 10.3389/fbinf.2023.1284705
Suraiya Akhter, John H. Miller
{"title":"BPAGS: a web application for bacteriocin prediction via feature evaluation using alternating decision tree, genetic algorithm, and linear support vector classifier","authors":"Suraiya Akhter, John H. Miller","doi":"10.3389/fbinf.2023.1284705","DOIUrl":"https://doi.org/10.3389/fbinf.2023.1284705","url":null,"abstract":"The use of bacteriocins has emerged as a propitious strategy in the development of new drugs to combat antibiotic resistance, given their ability to kill bacteria with both broad and narrow natural spectra. Hence, a compelling requirement arises for a precise and efficient computational model that can accurately predict novel bacteriocins. Machine learning’s ability to learn patterns and features from bacteriocin sequences that are difficult to capture using sequence matching-based methods makes it a potentially superior choice for accurate prediction. A web application for predicting bacteriocin was created in this study, utilizing a machine learning approach. The feature sets employed in the application were chosen using alternating decision tree (ADTree), genetic algorithm (GA), and linear support vector classifier (linear SVC)-based feature evaluation methods. Initially, potential features were extracted from the physicochemical, structural, and sequence-profile attributes of both bacteriocin and non-bacteriocin protein sequences. We assessed the candidate features first using the Pearson correlation coefficient, followed by separate evaluations with ADTree, GA, and linear SVC to eliminate unnecessary features. Finally, we constructed random forest (RF), support vector machine (SVM), decision tree (DT), logistic regression (LR), k-nearest neighbors (KNN), and Gaussian naïve Bayes (GNB) models using reduced feature sets. We obtained the overall top performing model using SVM with ADTree-reduced features, achieving an accuracy of 99.11% and an AUC value of 0.9984 on the testing dataset. We also assessed the predictive capabilities of our best-performing models for each reduced feature set relative to our previously developed software solution, a sequence alignment-based tool, and a deep-learning approach. A web application, titled BPAGS (Bacteriocin Prediction based on ADTree, GA, and linear SVC), was developed to incorporate the predictive models built using ADTree, GA, and linear SVC-based feature sets. Currently, the web-based tool provides classification results with associated probability values and has options to add new samples in the training data to improve the predictive efficacy. BPAGS is freely accessible at https://shiny.tricities.wsu.edu/bacteriocin-prediction/.","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"8 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139439460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
No-boundary thinking for artificial intelligence in bioinformatics and education 生物信息学和教育领域人工智能的无边界思维
Frontiers in bioinformatics Pub Date : 2024-01-08 DOI: 10.3389/fbinf.2023.1332902
Prajay Patel, Nisha Pillai, Inimary T. Toby
{"title":"No-boundary thinking for artificial intelligence in bioinformatics and education","authors":"Prajay Patel, Nisha Pillai, Inimary T. Toby","doi":"10.3389/fbinf.2023.1332902","DOIUrl":"https://doi.org/10.3389/fbinf.2023.1332902","url":null,"abstract":"No-boundary thinking enables the scientific community to reflect in a thoughtful manner and discover new opportunities, create innovative solutions, and break through barriers that might have otherwise constrained their progress. This concept encourages thinking without being confined by traditional rules, limitations, or established norms, and a mindset that is not limited by previous work, leading to fresh perspectives and innovative outcomes. So, where do we see the field of artificial intelligence (AI) in bioinformatics going in the next 30 years? That was the theme of a “No-Boundary Thinking” Session as part of the Mid-South Computational Bioinformatics Society’s (MCBIOS) 19th annual meeting in Irving, Texas. This session addressed various areas of AI in an open discussion and raised some perspectives on how popular tools like ChatGPT can be integrated into bioinformatics, communicating with scientists in different fields to properly utilize the potential of these algorithms, and how to continue educational outreach to further interest of data science and informatics to the next-generation of scientists.","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"49 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139448061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein-lipid interactions and protein anchoring modulate the modes of association of the globular domain of the Prion protein and Doppel protein to model membrane patches 蛋白-脂质相互作用和蛋白锚定调节朊病毒蛋白和多肽蛋白的球状结构域与模型膜片的结合模式
Frontiers in bioinformatics Pub Date : 2024-01-05 DOI: 10.3389/fbinf.2023.1321287
Patricia Soto, Davis T. Thalhuber, Frank Luceri, Jamie Janos, Mason R. Borgman, Noah M. Greenwood, Sofia Acosta, Hunter Stoffel
{"title":"Protein-lipid interactions and protein anchoring modulate the modes of association of the globular domain of the Prion protein and Doppel protein to model membrane patches","authors":"Patricia Soto, Davis T. Thalhuber, Frank Luceri, Jamie Janos, Mason R. Borgman, Noah M. Greenwood, Sofia Acosta, Hunter Stoffel","doi":"10.3389/fbinf.2023.1321287","DOIUrl":"https://doi.org/10.3389/fbinf.2023.1321287","url":null,"abstract":"The Prion protein is the molecular hallmark of the incurable prion diseases affecting mammals, including humans. The protein-only hypothesis states that the misfolding, accumulation, and deposition of the Prion protein play a critical role in toxicity. The cellular Prion protein (PrPC) anchors to the extracellular leaflet of the plasma membrane and prefers cholesterol- and sphingomyelin-rich membrane domains. Conformational Prion protein conversion into the pathological isoform happens on the cell surface. In vitro and in vivo experiments indicate that Prion protein misfolding, aggregation, and toxicity are sensitive to the lipid composition of plasma membranes and vesicles. A picture of the underlying biophysical driving forces that explain the effect of Prion protein - lipid interactions in physiological conditions is needed to develop a structural model of Prion protein conformational conversion. To this end, we use molecular dynamics simulations that mimic the interactions between the globular domain of PrPC anchored to model membrane patches. In addition, we also simulate the Doppel protein anchored to such membrane patches. The Doppel protein is the closest in the phylogenetic tree to PrPC, localizes in an extracellular milieu similar to that of PrPC, and exhibits a similar topology to PrPC even if the amino acid sequence is only 25% identical. Our simulations show that specific protein-lipid interactions and conformational constraints imposed by GPI anchoring together favor specific binding sites in globular PrPC but not in Doppel. Interestingly, the binding sites we found in PrPC correspond to prion protein loops, which are critical in aggregation and prion disease transmission barrier (β2-α2 loop) and in initial spontaneous misfolding (α2-α3 loop). We also found that the membrane re-arranges locally to accommodate protein residues inserted in the membrane surface as a response to protein binding.","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"39 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139381635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信