ICARus: a pipeline to extract robust gene expression signatures from transcriptome datasets.

IF 3.9 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-06-19 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1604418
Zhaorong Li, Juan I Fuxman Bass
{"title":"ICARus: a pipeline to extract robust gene expression signatures from transcriptome datasets.","authors":"Zhaorong Li, Juan I Fuxman Bass","doi":"10.3389/fbinf.2025.1604418","DOIUrl":null,"url":null,"abstract":"<p><p>Gene signature extraction from transcriptomics datasets has been instrumental to identify sets of co-regulated genes, identify associations with prognosis, and for biomarker discovery. Independent component analysis (ICA) is a powerful tool to extract such signatures to uncover hidden patterns in complex data and identify coherent gene sets. The ICARus package offers a robust pipeline to perform ICA on transcriptome datasets. While other packages perform ICA using one value of the main parameter (i.e., the number of signatures), ICARus identifies a range of near-optimal parameter values, iterates through these values, and assesses the robustness and reproducibility of the signature components identified. To test the performance of ICARus, we analyzed transcriptome datasets obtained from COVID-19 patients with different outcomes and from lung adenocarcinoma. We identified several reproducible gene expression signatures significantly associated with prognosis, temporal patterns, and cell type composition. The GSEA of these signatures matched findings from previous clinical studies and revealed potentially new biological mechanisms. ICARus with a vignette is available on Github https://github.com/Zha0rong/ICArus.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1604418"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222331/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1604418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene signature extraction from transcriptomics datasets has been instrumental to identify sets of co-regulated genes, identify associations with prognosis, and for biomarker discovery. Independent component analysis (ICA) is a powerful tool to extract such signatures to uncover hidden patterns in complex data and identify coherent gene sets. The ICARus package offers a robust pipeline to perform ICA on transcriptome datasets. While other packages perform ICA using one value of the main parameter (i.e., the number of signatures), ICARus identifies a range of near-optimal parameter values, iterates through these values, and assesses the robustness and reproducibility of the signature components identified. To test the performance of ICARus, we analyzed transcriptome datasets obtained from COVID-19 patients with different outcomes and from lung adenocarcinoma. We identified several reproducible gene expression signatures significantly associated with prognosis, temporal patterns, and cell type composition. The GSEA of these signatures matched findings from previous clinical studies and revealed potentially new biological mechanisms. ICARus with a vignette is available on Github https://github.com/Zha0rong/ICArus.

ICARus:一个从转录组数据集提取稳健基因表达特征的管道。
从转录组学数据集中提取基因特征有助于识别共调节基因集,识别与预后的关联,以及发现生物标志物。独立成分分析(ICA)是提取这些特征以揭示复杂数据中的隐藏模式和识别连贯基因集的强大工具。ICARus包提供了一个强大的管道来对转录组数据集执行ICA。当其他软件包使用一个主要参数值(即签名数量)执行ICA时,ICARus识别一系列接近最优的参数值,遍历这些值,并评估所识别的签名组件的稳健性和可重复性。为了测试ICARus的性能,我们分析了来自不同结局的COVID-19患者和肺腺癌患者的转录组数据集。我们发现了几个可重复的基因表达特征与预后、时间模式和细胞类型组成显著相关。这些特征的GSEA与先前临床研究的结果相匹配,并揭示了潜在的新的生物学机制。带有小插图的ICARus可在Github https://github.com/Zha0rong/ICArus上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信