{"title":"Artificial intelligence and classification of mature lymphoid neoplasms","authors":"J. Carreras, R. Hamoudi, Naoya Nakamura","doi":"10.37349/etat.2024.00221","DOIUrl":"https://doi.org/10.37349/etat.2024.00221","url":null,"abstract":"Hematologists, geneticists, and clinicians came to a multidisciplinary agreement on the classification of lymphoid neoplasms that combines clinical features, histological characteristics, immunophenotype, and molecular pathology analyses. The current classification includes the World Health Organization (WHO) Classification of tumours of haematopoietic and lymphoid tissues revised 4th edition, the International Consensus Classification (ICC) of mature lymphoid neoplasms (report from the Clinical Advisory Committee 2022), and the 5th edition of the proposed WHO Classification of haematolymphoid tumours (lymphoid neoplasms, WHO-HAEM5). This article revises the recent advances in the classification of mature lymphoid neoplasms. Artificial intelligence (AI) has advanced rapidly recently, and its role in medicine is becoming more important as AI integrates computer science and datasets to make predictions or classifications based on complex input data. Summarizing previous research, it is described how several machine learning and neural networks can predict the prognosis of the patients, and classified mature B-cell neoplasms. In addition, new analysis predicted lymphoma subtypes using cell-of-origin markers that hematopathologists use in the clinical routine, including CD3, CD5, CD19, CD79A, MS4A1 (CD20), MME (CD10), BCL6, IRF4 (MUM-1), BCL2, SOX11, MNDA, and FCRL4 (IRTA1). In conclusion, although most categories are similar in both classifications, there are also conceptual differences and differences in the diagnostic criteria for some diseases. It is expected that AI will be incorporated into the lymphoma classification as another bioinformatics tool.","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"29 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140672449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetite nanoparticles: an emerging adjunctive tool for the improvement of cancer immunotherapy","authors":"Phoomipat Jungcharoen, Kunakorn Thivakorakot, Nachayada Thientanukij, Natkamon Kosachunhanun, Chayanittha Vichapattana, Jutatip Panaampon, Charupong Saengboonmee","doi":"10.37349/etat.2024.00220","DOIUrl":"https://doi.org/10.37349/etat.2024.00220","url":null,"abstract":"Cancer immunotherapy has emerged as a groundbreaking field, offering promising and transformative tools for oncological research and treatment. However, it faces several limitations, including variations in cancer types, dependence on the tumor microenvironments (TMEs), immune cell exhaustion, and adverse reactions. Magnetic nanoparticles, particularly magnetite nanoparticles (MNPs), with established pharmacodynamics and pharmacokinetics for clinical use, hold great promise in this context and are now being explored for therapeutic aims. Numerous preclinical studies have illustrated their efficacy in enhancing immunotherapy through various strategies, such as modulating leukocyte functions, creating favorable TMEs for cytotoxic T lymphocytes, combining with monoclonal antibodies, and stimulating the immune response via magnetic hyperthermia (MHT) treatment (Front Immunol. 2021;12:701485. doi: 10.3389/fimmu.2021.701485). However, the current clinical trials of MNPs are mostly for diagnostic aims and as a tool for generating hyperthermia for tumor ablation. With concerns about the adverse effects of MNPs in the in vivo systems, clinical translation and clinical study of MNP-boosted immunotherapy remains limited. The lack of extensive clinical investigations poses a current barrier to patient application. Urgent efforts are needed to ascertain both the efficacy of MNP-enhanced immunotherapy and its safety profile in combination therapy. This article reviews the roles, potential, and challenges of using MNPs in advancing cancer immunotherapy. The application of MNPs in boosting immunotherapy, and its perspective role in research and development is also discussed.","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"61 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140670726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Hansen, Jonathon Hill, Gary Tincknell, Derrick Siu, Daniel Brungs, Philip Clingan, Lorraine Chantrill, Udit Nindra
{"title":"Evidence for the evolving role of neoadjuvant and perioperative immunotherapy in resectable non-small cell lung cancer.","authors":"Thomas Hansen, Jonathon Hill, Gary Tincknell, Derrick Siu, Daniel Brungs, Philip Clingan, Lorraine Chantrill, Udit Nindra","doi":"10.37349/etat.2024.00273","DOIUrl":"10.37349/etat.2024.00273","url":null,"abstract":"<p><p>The treatment of early-stage non-small cell lung cancer (NSCLC) is becoming increasingly complex. Standard of care management for the past decade has been adjuvant chemotherapy following curative intent resection regardless of nodal status or tumour profile. With the increased incorporation of immunotherapy in NSCLC, especially in the locally advanced, unresectable, or metastatic settings, multiple studies have sought to assess its utility in early-stage disease. While there are suboptimal responses to neoadjuvant chemotherapy alone, there is a strong rationale for the use of neoadjuvant immunotherapy in tumour downstaging, based upon the concept of enhanced T cell priming at the time of a high tumour antigen burden, and demonstrated clinically in other solid tumours, such as melanoma. In the NSCLC cancer setting, currently over 20 combinations of chemoimmunotherapy in the neoadjuvant and perioperative setting have been studied with results variable. Multiple large phase III studies have demonstrated that neoadjuvant chemoimmunotherapy combinations result in significant advances in pathological response, disease free and overall survival which has led to practice change across the world. Currently, combination immunotherapy regimens with novel agents targeting alternate immunomodulatory pathways are now being investigated. Given this, the landscape of treatment in resectable early-stage NSCLC has become increasingly complex. This review outlines the literature of neoadjuvant and perioperative immunotherapy and discusses its potential benefits and complexities and ongoing considerations into future research.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"5 6","pages":"1247-1260"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Woo Hwang, Jasmine Kauffeld, Sarah Belay, Joep J de Jong, Elai Davicioni, Wenping Li, Jeanny B Aragon-Ching
{"title":"Upper tract urothelial cancer (UTUC) genomic profiling and correlation regarding benefit of platinum-based chemotherapy.","authors":"Min Woo Hwang, Jasmine Kauffeld, Sarah Belay, Joep J de Jong, Elai Davicioni, Wenping Li, Jeanny B Aragon-Ching","doi":"10.37349/etat.2024.00274","DOIUrl":"10.37349/etat.2024.00274","url":null,"abstract":"<p><p>Upper tract urothelial cancer (UTUC) are rare subsets of urothelial cancer, which typically present with more aggressive course. Molecular markers stratifying urothelial tumors as luminal subtype and non-luminal subtype tumors have been proposed to select patients who may have greater or lesser benefit from neoadjuvant systemic therapy in bladder cancer, though not yet evaluated in UTUC. Here, a single-institution study retrospectively obtained clinical and genomic information in patients with UTUC and evaluated four patient tumors using the Decipher Bladder<sup>®</sup> assay and Foundation Medicine<sup>®</sup> test. All four patients had non-luminal molecular subtype including basal (<i>N</i> = 4) and mixed basal/claudin-low (<i>N</i> = 2) subtypes. The best clinical response achieved was stable disease in a patient who had basal/claudin-low subtype with residual ypT3 after neoadjuvant chemotherapy. For the remaining three patients, all were treated with platinum-based chemotherapy for eventual metastatic disease but all three showed progressive disease with limited overall survival, highlighting their aggressive course. The non-luminal subtype and lack of <i>FGFR</i> alteration may partly explain the poor overall outcomes while the real-world benefit of next generation sequencing for clinical use in UTUC patients require further clarification in a larger cohort study.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"5 6","pages":"1261-1270"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Apurva Sood, V V Jothiswaran, Amrita Singh, Anuradha Sharma
{"title":"Anticancer peptides as novel immunomodulatory therapeutic candidates for cancer treatment.","authors":"Apurva Sood, V V Jothiswaran, Amrita Singh, Anuradha Sharma","doi":"10.37349/etat.2024.00264","DOIUrl":"10.37349/etat.2024.00264","url":null,"abstract":"<p><p>Cancer remains a concern after years of research in this field. Conventional therapies such as chemotherapy, radiation, and surgery are available for cancer treatment, but they are characterized by various side effects. There are several immunological challenges that make it difficult for the immune system and conventional therapies to treat cancer. Some of these challenges include heterogeneity, resistance to medicines, and cancer relapse. Even advanced treatments like immune checkpoint inhibitors (ICIs), which revolutionized cancer treatment, have associated toxicity and resistance further necessitate the exploration of alternative therapies. Anticancer peptides (ACPs) offer promising potential as cancer-fighting agents and address challenges such as treatment resistance, tumor heterogeneity, and metastasis. Although these peptides exist as components of the defense system in various plants, animals, fungi, etc., but can also be created synthetically and used as a new treatment measure. These peptides possess properties that make them appealing for cancer therapy, such as apoptosis induction, inhibition of angiogenesis, and cell membrane breakdown with low toxicity. Their capacity to specifically target cancer cells selectively holds promise for enhancing treatment environments as well as improving patients' quality of life. This review provides detailed insights into the different prospects of ACPs, including their characterization, use as immunomodulatory agents in cancer treatment, and their mechanistic details after addressing various immunological challenges in existing cancer treatment strategies. In conclusion, ACPs have promising potential as novel cancer therapeutics due to their target specificity and fewer side effects than conventional therapies.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"5 5","pages":"1074-1099"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scott D Bell, Anthony E Quinn, Tom D Spitzer, Brady B Voss, Mark R Wakefield, Yujiang Fang
{"title":"Emerging molecular therapies in the treatment of bladder cancer.","authors":"Scott D Bell, Anthony E Quinn, Tom D Spitzer, Brady B Voss, Mark R Wakefield, Yujiang Fang","doi":"10.37349/etat.2024.00267","DOIUrl":"10.37349/etat.2024.00267","url":null,"abstract":"<p><p>Bladder cancer is a leading cancer type in men. The complexity of treatment in late-stage bladder cancer after systemic spread through the lymphatic system highlights the importance of modulating disease-free progression as early as possible in cancer staging. With current therapies relying on previous standards, such as platinum-based chemotherapeutics and immunomodulation with Bacillus Calmette-Guerin, researchers, and clinicians are looking for targeted therapies to stop bladder cancer at its source early in progression. A new era of molecular therapies that target specific features upregulated in bladder cancer cell lines is surfacing, which may be able to provide clinicians and patients with better control of disease progression. Here, we discuss multiple emerging therapies including immune checkpoint inhibitors of the programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway, antibody-drug conjugates, modulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) cell proliferation pathway, chimeric antigen receptor T-cell therapy, and fibroblast growth factor receptor targeting. Together, these modern treatments provide potentially promising results for bladder cancer patients with the possibility of increasing remission and survival rates.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"5 5","pages":"1135-1154"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prospects for breast cancer immunotherapy using microRNAs and transposable elements as objects.","authors":"Rustam Nailevich Mustafin","doi":"10.37349/etat.2024.00261","DOIUrl":"10.37349/etat.2024.00261","url":null,"abstract":"<p><p>One of the directions in treatment of chemoresistant breast cancer (BC) may include new methods of activating the immune response against tumor cells. Clinically used checkpoint inhibition using antibodies to PD-1 and PD-L1 works in some patients, but the lack of biomarkers means number of respondents is low. The possibility of combining this method with chemotherapy is limited by an increased risk of toxic liver damage, development of immune-related pneumonitis, and thyroid dysfunction. This article includes introduction into the clinic of new methods of immunotherapy for BC, among which epigenetic activation of retroelements, double-stranded transcripts of which stimulate the interferon response against the tumor, is promising. For this purpose, inhibitors of DNA methyltransferase*, histone deacetylase* and histone methyltransferase* are used (* subtitles in the main text). Their antitumor effect is also mediated by removal of repressive epigenetic marks from tumor suppressor genes. However, numerous studies have proven the role of retroelements in the carcinogenesis of various malignant neoplasms, including BC. Moreover, endogenous retroviruses HERV-K and LINE1 retrotransposons are planned to be used as diagnostic biomarkers for BC. Therefore, a rational approach to using viral mimicry in antitumor therapy of BC may be the simultaneous suppression of specific retrotransposons (drivers for carcinogenesis) using reverse transcriptase inhibitors and silencing of specific transposons involved in carcinogenesis using complementary microRNAs. To determine possible pathways of influence in this direction, 35 specific transposon-derived microRNAs* changes in BC were identified, which can become guides for targeted therapy of BC.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"5 5","pages":"1011-1026"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Azadeh Tabari, Brian D'Amore, Janice Noh, Michael S Gee, Dania Daye
{"title":"Quantitative peritumoral magnetic resonance imaging fingerprinting improves machine learning-based prediction of overall survival in colorectal cancer.","authors":"Azadeh Tabari, Brian D'Amore, Janice Noh, Michael S Gee, Dania Daye","doi":"10.37349/etat.2024.00205","DOIUrl":"10.37349/etat.2024.00205","url":null,"abstract":"<p><strong>Aim: </strong>To investigate magnetic resonance imaging (MRI)-based peritumoral texture features as prognostic indicators of survival in patients with colorectal liver metastasis (CRLM).</p><p><strong>Methods: </strong>From 2007-2015, forty-eight patients who underwent MRI within 3 months prior to initiating treatment for CRLM were identified. Clinicobiological prognostic variables were obtained from electronic medical records. Ninety-four metastatic hepatic lesions were identified on T1-weighted post-contrast images and volumetrically segmented. A total of 112 radiomic features (shape, first-order, texture) were derived from a 10 mm region surrounding each segmented tumor. A random forest model was applied, and performance was tested by receiver operating characteristic (ROC). Kaplan-Meier analysis was utilized to generate the survival curves.</p><p><strong>Results: </strong>Forty-eight patients (male:female = 23:25, age 55.3 years ± 18 years) were included in the study. The median lesion size was 25.73 mm (range 8.5-103.8 mm). Microsatellite instability was low in 40.4% (38/94) of tumors, with Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (<i>KRAS</i>) mutation detected in 68 out of 94 (72%) tumors. The mean survival was 35 months ± 21 months, and local disease progression was observed in 35.5% of patients. Univariate regression analysis identified 42 texture features [8 first order, 5 gray level dependence matrix (GLDM), 5 gray level run time length matrix (GLRLM), 5 gray level size zone matrix (GLSZM), 2 neighboring gray tone difference matrix (NGTDM), and 17 gray level co-occurrence matrix (GLCM)] independently associated with metastatic disease progression (<i>P</i> < 0.03). The random forest model achieved an area under the curve (AUC) of 0.88.</p><p><strong>Conclusions: </strong>MRI-based peritumoral heterogeneity features may serve as predictive biomarkers for metastatic disease progression and patient survival in CRLM.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"5 1","pages":"74-84"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CD99 tumor associated antigen is a potential target for antibody therapy of T-cell acute lymphoblastic leukemia.","authors":"Kamonporn Kotemul, Watchara Kasinrerk, Nuchjira Takheaw","doi":"10.37349/etat.2024.00207","DOIUrl":"10.37349/etat.2024.00207","url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) are an effective drug for targeted immunotherapy in several cancer types. However, so far, no antibody has been successfully developed for certain types of cancer, including T-cell acute lymphoblastic leukemia (T-ALL). T-ALL is an aggressive hematologic malignancy. T-ALL patients who are treated with chemotherapeutic drugs frequently relapse and become drug resistant. Therefore, antibody-based therapy is promising for T-ALL treatment. To successfully develop an antibody-based therapy for T-ALL, antibodies that induce death in malignant T cells but not in nonmalignant T cells are required to avoid the induction of secondary T-cell immunodeficiency. In this review, CD99 tumor associated antigen, which is highly expressed on malignant T cells and lowly expressed on nonmalignant T cells, is proposed to be a potential target for antibody therapy of T-ALL. Since certain clones of anti-CD99 mAbs induce apoptosis only in malignant T cells, these anti-CD99 mAbs might be a promising antibody drug for the treatment of T-ALL with high efficiency and low adverse effects. Moreover, over the past 25 years, many clones of anti-CD99 mAbs have been studied for their direct effects on T-ALL. These outcomes are gathered here.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"5 1","pages":"96-107"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabio Campodonico, Luca Foppiani, Vittoria Campodonico, Carlo Introini
{"title":"Practical implications of androgen receptor inhibitors for prostate cancer treatment.","authors":"Fabio Campodonico, Luca Foppiani, Vittoria Campodonico, Carlo Introini","doi":"10.37349/etat.2024.00234","DOIUrl":"10.37349/etat.2024.00234","url":null,"abstract":"<p><p>Antiandrogens have been used for the treatment of prostate cancer as a single agent or in combination with hormone deprivation therapy. New generation antiandrogens act like androgen receptor inhibitors (ARIs). Their binding complex blocks the pathways of cellular proliferation and differentiation of the prostate. Enzalutamide, apalutamide and darolutamide are the new ARIs that demonstrated acceptable tolerability and toxicity, both active in hormone-sensitive and castration-resistant prostate cancer (CRPC). There is no evidence of superiority of one drug over the other, therefore the therapeutic choice depends on the safety profile in relation to the individual patient, their comorbidities and clinical condition. ARIs have also shown promising results in association with new drugs that are active on patients with metastatic CRPC carrying the mutated breast cancer gene (<i>BRCA</i>). Before undergoing new antiandrogenic therapies, patients should be evaluated for cardiological and metabolic risk and possible drug interactions.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"5 3","pages":"543-550"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}