Harnessing the power of tumor-draining lymph nodes: unveiling predictive biomarkers for immune checkpoint inhibitor.

Q3 Medicine
Exploration of targeted anti-tumor therapy Pub Date : 2025-05-13 eCollection Date: 2025-01-01 DOI:10.37349/etat.2025.1002315
Zihan Chen, Jiangnan Yu, Zhikun Guo, Shuxian Chen, Yina Li, Qian Zhou, Lei Wang
{"title":"Harnessing the power of tumor-draining lymph nodes: unveiling predictive biomarkers for immune checkpoint inhibitor.","authors":"Zihan Chen, Jiangnan Yu, Zhikun Guo, Shuxian Chen, Yina Li, Qian Zhou, Lei Wang","doi":"10.37349/etat.2025.1002315","DOIUrl":null,"url":null,"abstract":"<p><p>With the escalating application of immune checkpoint inhibitors (ICIs) in solid tumors, these therapies have demonstrated clinical benefits but remain hampered by relatively low response rates. Reliable biomarkers to predict ICIs responsiveness are essential for selecting appropriate patients and optimizing therapeutic outcomes. Given the pivotal role of tumor-draining lymph nodes (TDLNs) in orchestrating systemic antitumor immunity, their intrinsic features-such as dynamic organization in T cell subsets and functional status of antigen-presenting cells, hold considerable potential as predictive biomarkers for ICIs. Moreover, the complexity of ICIs-induced responses in TDLNs necessitates integrating multiple biomarkers for accurate prediction. Through continuous refinement of predictive strategies, TDLNs are poised to play an indispensable role in enhancing ICIs efficacy and guiding personalized immunotherapy. Here, we provide a review to discuss the possibility of using the intrinsic features of TDLNs as a predictive marker for ICI therapy.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"6 ","pages":"1002315"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of targeted anti-tumor therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/etat.2025.1002315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

With the escalating application of immune checkpoint inhibitors (ICIs) in solid tumors, these therapies have demonstrated clinical benefits but remain hampered by relatively low response rates. Reliable biomarkers to predict ICIs responsiveness are essential for selecting appropriate patients and optimizing therapeutic outcomes. Given the pivotal role of tumor-draining lymph nodes (TDLNs) in orchestrating systemic antitumor immunity, their intrinsic features-such as dynamic organization in T cell subsets and functional status of antigen-presenting cells, hold considerable potential as predictive biomarkers for ICIs. Moreover, the complexity of ICIs-induced responses in TDLNs necessitates integrating multiple biomarkers for accurate prediction. Through continuous refinement of predictive strategies, TDLNs are poised to play an indispensable role in enhancing ICIs efficacy and guiding personalized immunotherapy. Here, we provide a review to discuss the possibility of using the intrinsic features of TDLNs as a predictive marker for ICI therapy.

利用肿瘤引流淋巴结的力量:揭示免疫检查点抑制剂的预测性生物标志物。
随着免疫检查点抑制剂(ICIs)在实体肿瘤中的应用不断升级,这些疗法已经显示出临床益处,但仍然受到相对较低的反应率的阻碍。预测ICIs反应性的可靠生物标志物对于选择合适的患者和优化治疗结果至关重要。鉴于肿瘤引流淋巴结(tdln)在协调全身性抗肿瘤免疫中的关键作用,它们的内在特征——如T细胞亚群的动态组织和抗原呈递细胞的功能状态,作为ICIs的预测性生物标志物具有相当大的潜力。此外,icis诱导的tdln反应的复杂性需要整合多种生物标志物来准确预测。通过不断完善预测策略,tdln有望在提高ICIs疗效和指导个性化免疫治疗方面发挥不可或缺的作用。在这里,我们提供一篇综述来讨论使用tdln的内在特征作为ICI治疗的预测标志物的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信