{"title":"循环肿瘤DNA (ctDNA)在尿路上皮癌中的作用。","authors":"Jeanny B Aragon-Ching","doi":"10.37349/etat.2025.1002317","DOIUrl":null,"url":null,"abstract":"<p><p>The role of circulating tumor DNA (ctDNA) in urothelial cancers is a rapidly evolving area of research. Urothelial cancer is the most common subtype of bladder cancer, and biomarkers that predict response or prognosticate outcomes have been long sought after. Tumor-informed ctDNA assays have been utilized in several other cancers and increasingly used in both muscle invasive bladder cancer (MIBC) and metastatic urothelial cancer (mUC) to inform treatment decision-making. While a universal consensus on ctDNA testing has not been fully defined and discussed herein, understanding its benefits and limitations is important to help guide the practical application in the clinic.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"6 ","pages":"1002317"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098328/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of circulating tumor DNA (ctDNA) in urothelial cancers.\",\"authors\":\"Jeanny B Aragon-Ching\",\"doi\":\"10.37349/etat.2025.1002317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of circulating tumor DNA (ctDNA) in urothelial cancers is a rapidly evolving area of research. Urothelial cancer is the most common subtype of bladder cancer, and biomarkers that predict response or prognosticate outcomes have been long sought after. Tumor-informed ctDNA assays have been utilized in several other cancers and increasingly used in both muscle invasive bladder cancer (MIBC) and metastatic urothelial cancer (mUC) to inform treatment decision-making. While a universal consensus on ctDNA testing has not been fully defined and discussed herein, understanding its benefits and limitations is important to help guide the practical application in the clinic.</p>\",\"PeriodicalId\":73002,\"journal\":{\"name\":\"Exploration of targeted anti-tumor therapy\",\"volume\":\"6 \",\"pages\":\"1002317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098328/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploration of targeted anti-tumor therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37349/etat.2025.1002317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of targeted anti-tumor therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/etat.2025.1002317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
The role of circulating tumor DNA (ctDNA) in urothelial cancers.
The role of circulating tumor DNA (ctDNA) in urothelial cancers is a rapidly evolving area of research. Urothelial cancer is the most common subtype of bladder cancer, and biomarkers that predict response or prognosticate outcomes have been long sought after. Tumor-informed ctDNA assays have been utilized in several other cancers and increasingly used in both muscle invasive bladder cancer (MIBC) and metastatic urothelial cancer (mUC) to inform treatment decision-making. While a universal consensus on ctDNA testing has not been fully defined and discussed herein, understanding its benefits and limitations is important to help guide the practical application in the clinic.