Discover nano最新文献

筛选
英文 中文
Electronic structure of superconducting VN(111) films. 超导 VN(111) 薄膜的电子结构。
Discover nano Pub Date : 2024-03-11 DOI: 10.1186/s11671-024-03978-x
Rongjing Zhai, Jiachang Bi, Shun Zheng, Wei Chen, Yu Lin, Shaozhu Xiao, Yanwei Cao
{"title":"Electronic structure of superconducting VN(111) films.","authors":"Rongjing Zhai, Jiachang Bi, Shun Zheng, Wei Chen, Yu Lin, Shaozhu Xiao, Yanwei Cao","doi":"10.1186/s11671-024-03978-x","DOIUrl":"10.1186/s11671-024-03978-x","url":null,"abstract":"<p><p>Vanadium nitride (VN) is a transition-metal nitride with remarkable properties that have prompted extensive experimental and theoretical investigations in recent years. However, there is a current paucity of experimental research investigating the temperature-dependent electronic structure of single-crystalline VN. In this study, high-quality VN(111) films were successfully synthesized on <math><mi>α</mi></math> -Al <math><msub><mrow></mrow> <mn>2</mn></msub> </math> O <math><msub><mrow></mrow> <mn>3</mn></msub> </math> (0001) substrates using magnetron sputtering. The crystal and electronic structures of the VN films were characterized by a combination of high-resolution X-ray diffraction, low-energy electron diffraction, resonant soft X-ray absorption spectroscopy, and ultraviolet photoelectron spectroscopy. The electrical transport measurements indicate that the superconducting critical temperature of the VN films is around 8.1 K. Intriguingly, the temperature-dependent photoelectron spectroscopy measurements demonstrate a weak temperature dependence in the electronic structure of the VN films, which is significant for understanding the ground state of VN compounds.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"42"},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting triple negative breast cancer stem cells using nanocarriers. 利用纳米载体靶向三阴性乳腺癌干细胞。
Discover nano Pub Date : 2024-03-07 DOI: 10.1186/s11671-024-03985-y
Nagasen Dasari, Girija Sankar Guntuku, Sai Kiran S S Pindiprolu
{"title":"Targeting triple negative breast cancer stem cells using nanocarriers.","authors":"Nagasen Dasari, Girija Sankar Guntuku, Sai Kiran S S Pindiprolu","doi":"10.1186/s11671-024-03985-y","DOIUrl":"10.1186/s11671-024-03985-y","url":null,"abstract":"<p><p>Breast cancer is a complex and heterogeneous disease, encompassing various subtypes characterized by distinct molecular features, clinical behaviors, and treatment responses. Categorization of subtypes is based on the presence or absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), leading to subtypes such as luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). TNBC, comprising around 20% of all breast cancers, lacks expression of ER, PR, and HER2 receptors, rendering it unresponsive to targeted therapies and presenting significant challenges in treatment. TNBC is associated with aggressive behavior, high rates of recurrence, and resistance to chemotherapy. Tumor initiation, progression, and treatment resistance in TNBC are attributed to breast cancer stem cells (BCSCs), which possess self-renewal, differentiation, and tumorigenic potential. Surface markers, self-renewal pathways (Notch, Wnt, Hedgehog signaling), apoptotic protein (Bcl-2), angiogenesis inhibition (VEGF inhibitors), and immune modulation (cytokines, immune checkpoint inhibitors) are among the key targets discussed in this review. However, targeting the BCSC subpopulation in TNBC presents challenges, including off-target effects, low solubility, and bioavailability of anti-BCSC agents. Nanoparticle-based therapies offer a promising approach to target various molecular pathways and cellular processes implicated in survival of BSCS in TNBC. In this review, we explore various nanocarrier-based approaches for targeting BCSCs in TNBC, aiming to overcome these challenges and improve treatment outcomes for TNBC patients. These nanoparticle-based therapeutic strategies hold promise for addressing the therapeutic gap in TNBC treatment by delivering targeted therapies to BCSCs while minimizing systemic toxicity and enhancing treatment efficacy.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"41"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-indentation study of dislocation evolution in GaN-based laser diodes. 氮化镓基激光二极管中位错演变的纳米压痕研究。
Discover nano Pub Date : 2024-03-07 DOI: 10.1186/s11671-024-03983-0
Jingjing Chen, Xujun Su, Guobing Wang, Mutong Niu, Xinran Li, Ke Xu
{"title":"Nano-indentation study of dislocation evolution in GaN-based laser diodes.","authors":"Jingjing Chen, Xujun Su, Guobing Wang, Mutong Niu, Xinran Li, Ke Xu","doi":"10.1186/s11671-024-03983-0","DOIUrl":"10.1186/s11671-024-03983-0","url":null,"abstract":"<p><p>The slip systems and motion behavior of dislocations induced by nano-indentation technique in GaN-based LDs were investigated. Dislocations with burgers vector of b = 1/3 <11 <math><mover><mn>2</mn> <mo>¯</mo></mover> </math> 3> were introduced on either {11 <math><mover><mn>2</mn> <mo>¯</mo></mover> </math> 2} <11 <math><mover><mn>2</mn> <mo>¯</mo></mover> </math> 3>, or {1 <math><mover><mn>1</mn> <mo>¯</mo></mover> </math> 01} <11 <math><mover><mn>2</mn> <mo>¯</mo></mover> </math> 3> pyramidal slip systems in the upper p-GaN layer. Besides, {0001} <11 <math><mover><mn>2</mn> <mo>¯</mo></mover> </math> 0> basal slip system was also activated. The AlGaN/InGaN multi-layers in device can provide mismatch stresses to prevent dislocations from slipping through. It was observed that the density of dislocations induced by the indenter significantly decreased from the upper to the lower regions of the multi-layers. The a + c dislocations on pyramidal slip planes were mostly blocked by the strained layers.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"40"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-efficiency flexible organic solar cells with a polymer-incorporated pseudo-planar heterojunction. 采用聚合物嵌入式伪平面异质结的高效柔性有机太阳能电池。
Discover nano Pub Date : 2024-03-04 DOI: 10.1186/s11671-024-03982-1
Lin Zhang, Yuxin He, Wen Deng, Xueliang Guo, Zhaozhao Bi, Jie Zeng, Hui Huang, Guangye Zhang, Chen Xie, Yong Zhang, Xiaotian Hu, Wei Ma, Yongbo Yuan, Xiaoming Yuan
{"title":"High-efficiency flexible organic solar cells with a polymer-incorporated pseudo-planar heterojunction.","authors":"Lin Zhang, Yuxin He, Wen Deng, Xueliang Guo, Zhaozhao Bi, Jie Zeng, Hui Huang, Guangye Zhang, Chen Xie, Yong Zhang, Xiaotian Hu, Wei Ma, Yongbo Yuan, Xiaoming Yuan","doi":"10.1186/s11671-024-03982-1","DOIUrl":"10.1186/s11671-024-03982-1","url":null,"abstract":"<p><p>Organic solar cells (OSCs) are considered as a crucial energy source for flexible and wearable electronics. Pseudo-planar heterojunction (PPHJ) OSCs simplify the solution preparation and morphology control. However, non-halogenated solvent-printed PPHJ often have an undesirable vertical component distribution and insufficient donor/acceptor interfaces. Additionally, the inherent brittleness of non-fullerene small molecule acceptors (NFSMAs) in PPHJ leads to poor flexibility, and the NFSMAs solution shows inadequate viscosity during the printing of acceptor layer. Herein, we propose a novel approach termed polymer-incorporated pseudo-planar heterojunction (PiPPHJ), wherein a small amount of polymer donor is introduced into the NFSMAs layer. Our findings demonstrate that the incorporation of polymer increases the viscosity of acceptor solution, thereby improving the blade-coating processability and overall film quality. Simultaneously, this strategy effectively modulates the vertical component distribution, resulting in more donor/acceptor interfaces and an improved power conversion efficiency of 17.26%. Furthermore, PiPPHJ-based films exhibit superior tensile properties, with a crack onset strain of 12.0%, surpassing PPHJ-based films (9.6%). Consequently, large-area (1 cm<sup>2</sup>) flexible devices achieve a considerable efficiency of 13.30% and maintain excellent mechanical flexibility with 82% of the initial efficiency after 1000 bending cycles. These findings underscore the significant potential of PiPPHJ-based OSCs in flexible and wearable electronics.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"39"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomaterial-based optical colorimetric sensors for rapid monitoring of inorganic arsenic species: a review. 基于纳米材料的光学比色传感器用于快速监测无机砷物种:综述。
Discover nano Pub Date : 2024-02-29 DOI: 10.1186/s11671-024-03981-2
Kalayou Hiluf Gebremedhin, Mebrahtu Hagos Kahsay, Nigus Kebede Wegahita, Tesfamariam Teklu, Berihu Abadi Berhe, Asfaw Gebretsadik Gebru, Amanuel Hadera Tesfay, Abraha Geberekidan Asgedom
{"title":"Nanomaterial-based optical colorimetric sensors for rapid monitoring of inorganic arsenic species: a review.","authors":"Kalayou Hiluf Gebremedhin, Mebrahtu Hagos Kahsay, Nigus Kebede Wegahita, Tesfamariam Teklu, Berihu Abadi Berhe, Asfaw Gebretsadik Gebru, Amanuel Hadera Tesfay, Abraha Geberekidan Asgedom","doi":"10.1186/s11671-024-03981-2","DOIUrl":"10.1186/s11671-024-03981-2","url":null,"abstract":"<p><p>Health concerns about the toxicity of arsenic compounds have therefore encouraged the development of new analytical tools for quick monitoring of arsenic in real samples with improved sensitivity, selectivity, and reliability. An overview of advanced optical colorimetric sensor techniques for real-time monitoring of inorganic arsenic species in the environment is given in this review paper. Herein, several advanced optical colorimetric sensor techniques for arsenite (As<sup>+3</sup>) and arsenate (As<sup>+5</sup>) based on doping chromogenic dyes/reagents, biomolecule-modified nanomaterials, and arsenic-binding ligand tethered nanomaterials are introduced and discussed. This review also highlights the benefits and limitations of the colorimetric sensor for arsenic species. Finally, prospects and future developments of an optical colorimetric sensor for arsenic species are also proposed. For future study in this sector, particularly for field application, authors recommend this review paper will be helpful for readers to understand the design principles and their corresponding sensing mechanisms of various arsenic optical colorimetric sensors.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"38"},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-functionalized carbon dots for signaling immuno-reaction of carcinoembryonic antigen in an electrochemical biosensor for cancer biomarker detection. 用于癌症生物标记物检测的电化学生物传感器中癌胚抗原信号免疫反应的生物功能化碳点。
Discover nano Pub Date : 2024-02-29 DOI: 10.1186/s11671-024-03980-3
Amarnath Chellachamy Anbalagan, Jyoti Korram, Mukesh Doble, Shilpa N Sawant
{"title":"Bio-functionalized carbon dots for signaling immuno-reaction of carcinoembryonic antigen in an electrochemical biosensor for cancer biomarker detection.","authors":"Amarnath Chellachamy Anbalagan, Jyoti Korram, Mukesh Doble, Shilpa N Sawant","doi":"10.1186/s11671-024-03980-3","DOIUrl":"10.1186/s11671-024-03980-3","url":null,"abstract":"<p><p>Early diagnosis of cancer demands sensitive and accurate detection of cancer biomarkers in blood. Carbon dots (CDs) bio-functionalization with antibodies, peptides or aptamers have played significant role in cancer diagnosis and targeted cancer therapy. Herein, a biosensor for detection of cancer biomarker carcinoembryonic antigen (CEA) in blood serum has been designed using CDs bio-functionalized with HRP-conjugated CEA antibody (CUCDs@<sup>CEA</sup>Ab2) as detection probe. CDs were synthesized by upscaling of cow urine, a nitrogen rich biomass waste, by hydrothermal method. Detection probe based on CDs resulted in 3.5 times higher sensitivity as compared to conventional electrochemical sandwich immunoassay. To further improve the sensor performance, hyper-branched polyethylenimine grafted poly amino aniline (PEI-g-PAANI) was used as the sensing interface, which enabled immobilization of higher amount of capture antibody. Detection of CEA in human blood serum coupled with wide linear range (0.5-50 ng/ml), good specificity, stability, reproducibility and low detection limit (10 pg/ml) signified the excellence of CUCDs based CEA immunosensor. CUCDs exhibited excitation wavelength dependent fluorescence property and showed strong blue emission under UV irradiation. MTT assay indicated that the material is not toxic towards human dental pulp stem cells (hDPSCs) and MG63 osteosarcoma cells (cell viability > 90%). The present study demonstrates a methodology for valorization of animal waste to a cost-effective carbon based functional nanomaterial for clinical detection of cancer biomarkers.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"37"},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced heat transfer analysis on Ag-Al[Formula: see text]O[Formula: see text]/water hybrid magneto-convective nanoflow. Ag-Al[式:见正文]O[式:见正文]/水混合磁对流纳米流的强化传热分析。
Discover nano Pub Date : 2024-02-22 DOI: 10.1186/s11671-024-03975-0
M Ragavi, T Poornima
{"title":"Enhanced heat transfer analysis on Ag-Al[Formula: see text]O[Formula: see text]/water hybrid magneto-convective nanoflow.","authors":"M Ragavi, T Poornima","doi":"10.1186/s11671-024-03975-0","DOIUrl":"10.1186/s11671-024-03975-0","url":null,"abstract":"<p><p>The primary goal of this investigation is to examine the heat and flow characteristics of a hybrid nanofluid consisting of silver (Ag) and aluminum oxide (Al[Formula: see text]O[Formula: see text] nanoparticles over an unsteady radially stretching sheet embedded in porous medium. The investigation is conducted under the influence of several key parameters, namely joule heating, viscous dissipation, porous, slip, and suction. The technique of similarity transformations is used to transform the governing system of PDEs into nonlinear ODEs and the bvp4c solver is used to solve them numerically. The present study examines the influence of sphere and platelet shape nanoparticles on the temperature and velocity profiles. The outcomes are discussed through graphs and tables. A rise in the porous, slip, and suction parameters makes the velocity profile decrease gradually. The temperature escalates when Biot number, magnetic parameter, and Eckert number increase. As compared to sphere shapes, platelet-shaped nanoparticles exhibit the greatest heat transfer and flow. Results reveal that by using Ag-Al[Formula: see text]O[Formula: see text]/H[Formula: see text]O hybrid nanofluid with a volume fraction of 5%, the heat transfer enhancement of platelet shape nanoparticles increased by 11.88% than sphere-shaped nanoparticles. Overall, the platelet shape of nanoparticles offers distinctive advantages in various engineering applications, primarily due to their large surface area, anisotropic properties, and tunable surface chemistry. These properties make them versatile tools for improving the performance of materials and systems in engineering fields. The findings can contribute to the design and optimization of nanofluid-based systems in various engineering applications, such as heat exchangers, microfluidics, and energy conversion devices.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"31"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modification of thermal and electrical characteristics of hybrid polymer nanocomposites through gamma irradiation for advanced applications. 通过伽马辐照改变杂化聚合物纳米复合材料的热学和电学特性,使其应用于先进领域。
Discover nano Pub Date : 2024-02-22 DOI: 10.1186/s11671-024-03972-3
C M Kavitha, K M Eshwarappa, Shivakumar Jagadish Shetty, S C Gurumurthy, Srivathsava Surabhi, T Niranjana Prabhu, Jong-Ryul Jeong, D V Morales
{"title":"Modification of thermal and electrical characteristics of hybrid polymer nanocomposites through gamma irradiation for advanced applications.","authors":"C M Kavitha, K M Eshwarappa, Shivakumar Jagadish Shetty, S C Gurumurthy, Srivathsava Surabhi, T Niranjana Prabhu, Jong-Ryul Jeong, D V Morales","doi":"10.1186/s11671-024-03972-3","DOIUrl":"10.1186/s11671-024-03972-3","url":null,"abstract":"<p><p>In this article, we present a straightforward in-situ approach for producing Ag NPs incorporated in graphene oxide (GO) blended with glutaraldehyde (GA) cross-linked polyvinyl alcohol (PVA) matrix. Samples are γ-irradiated by doses of 2, 5, and 10 kGy and in comparison with the pristine films, the thermal conductivity ('k') and effusivity are measured. 'k' decreases with irradiation doses up to 5 kGy and further increase in the dosage results increase in 'k'. We performed FDTD modeling to verify the effect of polarization and periodicity on the absorptivity and emissivity spectra that are correlated to the 'k' and effusivity, empirically. Hence, we can confess that the structural properties of the prepared hybrid nanocomposite are manipulated by γ-irradiation. This attests that the PVA/GO-Ag/GA nanocomposite is radiation-sensitive and could be employed for thermal management systems. Moreover, their strong electrical insulation, as the measured dc conductivity of the γ-irradiated samples is found to be in the range of 2.66 × 10<sup>-8</sup>-4.319 × 10<sup>-7</sup> Sm<sup>-1</sup>, which is below the percolation threshold of 1.0 × 10<sup>-6</sup> Sm<sup>-1</sup>, demonstrates that they are excellent candidates for the use of thermal management materials. The low 'k' values allow us to use this promising material as thermal insulating substrates in microsensors and microsystems. They are also great choices for usage as wire and cable insulation in nuclear reactors due to their superior electrical insulation.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"34"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective cytotoxic effects of nitrogen-doped graphene coated mixed iron oxide nanoparticles on HepG2 as a new potential therapeutic approach. 氮掺杂石墨烯包覆的混合氧化铁纳米粒子对 HepG2 的选择性细胞毒性作用是一种新的潜在治疗方法。
Discover nano Pub Date : 2024-02-22 DOI: 10.1186/s11671-024-03977-y
Zeynep Demir, Berkay Sungur, Edip Bayram, Aysun Özkan
{"title":"Selective cytotoxic effects of nitrogen-doped graphene coated mixed iron oxide nanoparticles on HepG2 as a new potential therapeutic approach.","authors":"Zeynep Demir, Berkay Sungur, Edip Bayram, Aysun Özkan","doi":"10.1186/s11671-024-03977-y","DOIUrl":"10.1186/s11671-024-03977-y","url":null,"abstract":"<p><p>New selective therapeutics are needed for the treatment of hepatocellular carcinoma (HCC), the 7th most common cancer. In this study, we compared the cytotoxic effect induced by the release of pH-dependent iron nanoparticles from nitrogen-doped graphene-coated mixed iron oxide nanoparticles (Fe<sub>x</sub>O<sub>y</sub>/N-GN) with the cytotoxic effect of nitrogen-doped graphene (N-GN) and commercial graphene nanoflakes (GN) in Hepatoma G2 (HepG2) cells and healthy cells. The cytotoxic effect of nanocomposites (2.5-100 ug/ml) on HepG2 and healthy fibroblast (BJ) cells (12-48 h) was measured by Cell Viability assay, and the half maximal inhibitory concentration (IC<sub>50</sub>) was calculated. After the shortest (12 h) and longest incubation (48 h) incubation periods in HepG2 cells, IC<sub>50</sub> values of Fe<sub>x</sub>O<sub>y</sub>/N-GN were calculated as 21.95 to 2.11 µg.mL<sup>-1</sup>, IC<sub>50</sub> values of N-GN were calculated as 39.64 to 26.47 µg.mL<sup>-1</sup> and IC<sub>50</sub> values of GN were calculated as 49.94 to 29.94, respectively. After 48 h, Fe<sub>x</sub>O<sub>y</sub>/N-GN showed a selectivity index (SI) of 10.80 for HepG2/BJ cells, exceeding the SI of N-GN (1.27) by about 8.5-fold. The high cytotoxicity of FexOy/N-GN was caused by the fact that liver cancer cells have many transferrin receptors and time-dependent pH changes in their microenvironment increase iron release. This indicates the potential of Fe<sub>x</sub>O<sub>y</sub>/N-GN as a new selective therapeutic.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"33"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the synthesis parameters of durian skin-based activated carbon and the effects of silver nanocatalysts on its recyclability in methylene blue removal. 研究榴莲皮基活性炭的合成参数及纳米银催化剂对其去除亚甲基蓝的可回收性的影响。
Discover nano Pub Date : 2024-02-22 DOI: 10.1186/s11671-024-03974-1
Dzilal Amir, Ricca Rahman Nasaruddin, Maryam Yousefi, Mohd Sufri Mastuli, Sarina Sulaiman, Md Zahangir Alam, Nurul Sakinah Engliman
{"title":"Investigating the synthesis parameters of durian skin-based activated carbon and the effects of silver nanocatalysts on its recyclability in methylene blue removal.","authors":"Dzilal Amir, Ricca Rahman Nasaruddin, Maryam Yousefi, Mohd Sufri Mastuli, Sarina Sulaiman, Md Zahangir Alam, Nurul Sakinah Engliman","doi":"10.1186/s11671-024-03974-1","DOIUrl":"10.1186/s11671-024-03974-1","url":null,"abstract":"<p><p>Activated carbon (AC) is the most common and economically viable adsorbent for eliminating toxic organic pollutants, particularly dyes, from wastewater. Its widespread adoption is due to the simplicity and affordable production of AC, wherein low-cost agricultural wastes, such as durian skin can be used. Converting durian skin into AC presents a promising solution for its solid waste management. However, inherent drawbacks such as its non-selectivity, relatively short lifespan and laborious replacement and recovery processes diminish the overall efficacy of AC as an adsorbent. To address these challenges, the immobilisation of metal nanocatalysts such as silver nanoparticles (AgNPs) is one of the emerging solutions. AgNPs can facilitate the regeneration of the adsorption sites of AC by catalysing the conversion of the adsorbed dyes into harmless and simpler molecules. Nevertheless, the immobilisation of AgNPs on AC surface can be challenging as the pore size formation of AC is hard to control and the nanomaterials can easily leach out from the AC surface. Hence, in this study, we synthesised AC from durian skin (DS) and immobilised AgNPs on the AC-DS surface. Then, we used methylene blue (MB) removal for studying the adsorption capability and recyclability of the AC-DS. In the synthesis of AC-DS, the influences of reaction temperature, activating agent, and acid-washing to its capability in adsorptive removal of  MB in solution were first determined. It was found that 400 °C, KOH activating agent, and the presence of acid-washing (50% of HNO<sub>3</sub>) resulted in AC-DS with the highest percentage of MB removal (91.49 ± 2.86%). Then, the overall results from three recyclability experiments demonstrate that AC-DS with immobilised AgNPs exhibited higher MB removal after several cycles (up to 6 cycles) as compared to AC-DS alone, proving the benefit of AgNPs for the recyclability of AC-DS. We also found that AgNPs/Citrate@AC-DS exhibited better adsorption capability and recyclability as compared to AgNPs/PVP@AC-DS indicating significant influences of type of stabilisers in this study. This study also demonstrates that the presence of more oxygen-containing functional groups (i.e., carboxyl and hydroxyl functional groups) after acid-washing on AC-DS and in citrate molecules, has greater influence to the performance of AC-DS and AgNPs/Citrate@AC-DS in the removal of MB as compared to the influences of their BET surface area and pore structure. The findings in this study have the potential to promote and serve as a guideline for harnessing the advantages of nanomaterials, such as AgNPs, to enhance the properties of AC for environmental applications.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"32"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信