{"title":"Electronic structure of superconducting VN(111) films.","authors":"Rongjing Zhai, Jiachang Bi, Shun Zheng, Wei Chen, Yu Lin, Shaozhu Xiao, Yanwei Cao","doi":"10.1186/s11671-024-03978-x","DOIUrl":"10.1186/s11671-024-03978-x","url":null,"abstract":"<p><p>Vanadium nitride (VN) is a transition-metal nitride with remarkable properties that have prompted extensive experimental and theoretical investigations in recent years. However, there is a current paucity of experimental research investigating the temperature-dependent electronic structure of single-crystalline VN. In this study, high-quality VN(111) films were successfully synthesized on <math><mi>α</mi></math> -Al <math><msub><mrow></mrow> <mn>2</mn></msub> </math> O <math><msub><mrow></mrow> <mn>3</mn></msub> </math> (0001) substrates using magnetron sputtering. The crystal and electronic structures of the VN films were characterized by a combination of high-resolution X-ray diffraction, low-energy electron diffraction, resonant soft X-ray absorption spectroscopy, and ultraviolet photoelectron spectroscopy. The electrical transport measurements indicate that the superconducting critical temperature of the VN films is around 8.1 K. Intriguingly, the temperature-dependent photoelectron spectroscopy measurements demonstrate a weak temperature dependence in the electronic structure of the VN films, which is significant for understanding the ground state of VN compounds.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"42"},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Discover nanoPub Date : 2024-03-07DOI: 10.1186/s11671-024-03985-y
Nagasen Dasari, Girija Sankar Guntuku, Sai Kiran S S Pindiprolu
{"title":"Targeting triple negative breast cancer stem cells using nanocarriers.","authors":"Nagasen Dasari, Girija Sankar Guntuku, Sai Kiran S S Pindiprolu","doi":"10.1186/s11671-024-03985-y","DOIUrl":"10.1186/s11671-024-03985-y","url":null,"abstract":"<p><p>Breast cancer is a complex and heterogeneous disease, encompassing various subtypes characterized by distinct molecular features, clinical behaviors, and treatment responses. Categorization of subtypes is based on the presence or absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), leading to subtypes such as luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). TNBC, comprising around 20% of all breast cancers, lacks expression of ER, PR, and HER2 receptors, rendering it unresponsive to targeted therapies and presenting significant challenges in treatment. TNBC is associated with aggressive behavior, high rates of recurrence, and resistance to chemotherapy. Tumor initiation, progression, and treatment resistance in TNBC are attributed to breast cancer stem cells (BCSCs), which possess self-renewal, differentiation, and tumorigenic potential. Surface markers, self-renewal pathways (Notch, Wnt, Hedgehog signaling), apoptotic protein (Bcl-2), angiogenesis inhibition (VEGF inhibitors), and immune modulation (cytokines, immune checkpoint inhibitors) are among the key targets discussed in this review. However, targeting the BCSC subpopulation in TNBC presents challenges, including off-target effects, low solubility, and bioavailability of anti-BCSC agents. Nanoparticle-based therapies offer a promising approach to target various molecular pathways and cellular processes implicated in survival of BSCS in TNBC. In this review, we explore various nanocarrier-based approaches for targeting BCSCs in TNBC, aiming to overcome these challenges and improve treatment outcomes for TNBC patients. These nanoparticle-based therapeutic strategies hold promise for addressing the therapeutic gap in TNBC treatment by delivering targeted therapies to BCSCs while minimizing systemic toxicity and enhancing treatment efficacy.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"41"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Discover nanoPub Date : 2024-03-07DOI: 10.1186/s11671-024-03983-0
Jingjing Chen, Xujun Su, Guobing Wang, Mutong Niu, Xinran Li, Ke Xu
{"title":"Nano-indentation study of dislocation evolution in GaN-based laser diodes.","authors":"Jingjing Chen, Xujun Su, Guobing Wang, Mutong Niu, Xinran Li, Ke Xu","doi":"10.1186/s11671-024-03983-0","DOIUrl":"10.1186/s11671-024-03983-0","url":null,"abstract":"<p><p>The slip systems and motion behavior of dislocations induced by nano-indentation technique in GaN-based LDs were investigated. Dislocations with burgers vector of b = 1/3 <11 <math><mover><mn>2</mn> <mo>¯</mo></mover> </math> 3> were introduced on either {11 <math><mover><mn>2</mn> <mo>¯</mo></mover> </math> 2} <11 <math><mover><mn>2</mn> <mo>¯</mo></mover> </math> 3>, or {1 <math><mover><mn>1</mn> <mo>¯</mo></mover> </math> 01} <11 <math><mover><mn>2</mn> <mo>¯</mo></mover> </math> 3> pyramidal slip systems in the upper p-GaN layer. Besides, {0001} <11 <math><mover><mn>2</mn> <mo>¯</mo></mover> </math> 0> basal slip system was also activated. The AlGaN/InGaN multi-layers in device can provide mismatch stresses to prevent dislocations from slipping through. It was observed that the density of dislocations induced by the indenter significantly decreased from the upper to the lower regions of the multi-layers. The a + c dislocations on pyramidal slip planes were mostly blocked by the strained layers.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"40"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-efficiency flexible organic solar cells with a polymer-incorporated pseudo-planar heterojunction.","authors":"Lin Zhang, Yuxin He, Wen Deng, Xueliang Guo, Zhaozhao Bi, Jie Zeng, Hui Huang, Guangye Zhang, Chen Xie, Yong Zhang, Xiaotian Hu, Wei Ma, Yongbo Yuan, Xiaoming Yuan","doi":"10.1186/s11671-024-03982-1","DOIUrl":"10.1186/s11671-024-03982-1","url":null,"abstract":"<p><p>Organic solar cells (OSCs) are considered as a crucial energy source for flexible and wearable electronics. Pseudo-planar heterojunction (PPHJ) OSCs simplify the solution preparation and morphology control. However, non-halogenated solvent-printed PPHJ often have an undesirable vertical component distribution and insufficient donor/acceptor interfaces. Additionally, the inherent brittleness of non-fullerene small molecule acceptors (NFSMAs) in PPHJ leads to poor flexibility, and the NFSMAs solution shows inadequate viscosity during the printing of acceptor layer. Herein, we propose a novel approach termed polymer-incorporated pseudo-planar heterojunction (PiPPHJ), wherein a small amount of polymer donor is introduced into the NFSMAs layer. Our findings demonstrate that the incorporation of polymer increases the viscosity of acceptor solution, thereby improving the blade-coating processability and overall film quality. Simultaneously, this strategy effectively modulates the vertical component distribution, resulting in more donor/acceptor interfaces and an improved power conversion efficiency of 17.26%. Furthermore, PiPPHJ-based films exhibit superior tensile properties, with a crack onset strain of 12.0%, surpassing PPHJ-based films (9.6%). Consequently, large-area (1 cm<sup>2</sup>) flexible devices achieve a considerable efficiency of 13.30% and maintain excellent mechanical flexibility with 82% of the initial efficiency after 1000 bending cycles. These findings underscore the significant potential of PiPPHJ-based OSCs in flexible and wearable electronics.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"39"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanomaterial-based optical colorimetric sensors for rapid monitoring of inorganic arsenic species: a review.","authors":"Kalayou Hiluf Gebremedhin, Mebrahtu Hagos Kahsay, Nigus Kebede Wegahita, Tesfamariam Teklu, Berihu Abadi Berhe, Asfaw Gebretsadik Gebru, Amanuel Hadera Tesfay, Abraha Geberekidan Asgedom","doi":"10.1186/s11671-024-03981-2","DOIUrl":"10.1186/s11671-024-03981-2","url":null,"abstract":"<p><p>Health concerns about the toxicity of arsenic compounds have therefore encouraged the development of new analytical tools for quick monitoring of arsenic in real samples with improved sensitivity, selectivity, and reliability. An overview of advanced optical colorimetric sensor techniques for real-time monitoring of inorganic arsenic species in the environment is given in this review paper. Herein, several advanced optical colorimetric sensor techniques for arsenite (As<sup>+3</sup>) and arsenate (As<sup>+5</sup>) based on doping chromogenic dyes/reagents, biomolecule-modified nanomaterials, and arsenic-binding ligand tethered nanomaterials are introduced and discussed. This review also highlights the benefits and limitations of the colorimetric sensor for arsenic species. Finally, prospects and future developments of an optical colorimetric sensor for arsenic species are also proposed. For future study in this sector, particularly for field application, authors recommend this review paper will be helpful for readers to understand the design principles and their corresponding sensing mechanisms of various arsenic optical colorimetric sensors.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"38"},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Discover nanoPub Date : 2024-02-29DOI: 10.1186/s11671-024-03980-3
Amarnath Chellachamy Anbalagan, Jyoti Korram, Mukesh Doble, Shilpa N Sawant
{"title":"Bio-functionalized carbon dots for signaling immuno-reaction of carcinoembryonic antigen in an electrochemical biosensor for cancer biomarker detection.","authors":"Amarnath Chellachamy Anbalagan, Jyoti Korram, Mukesh Doble, Shilpa N Sawant","doi":"10.1186/s11671-024-03980-3","DOIUrl":"10.1186/s11671-024-03980-3","url":null,"abstract":"<p><p>Early diagnosis of cancer demands sensitive and accurate detection of cancer biomarkers in blood. Carbon dots (CDs) bio-functionalization with antibodies, peptides or aptamers have played significant role in cancer diagnosis and targeted cancer therapy. Herein, a biosensor for detection of cancer biomarker carcinoembryonic antigen (CEA) in blood serum has been designed using CDs bio-functionalized with HRP-conjugated CEA antibody (CUCDs@<sup>CEA</sup>Ab2) as detection probe. CDs were synthesized by upscaling of cow urine, a nitrogen rich biomass waste, by hydrothermal method. Detection probe based on CDs resulted in 3.5 times higher sensitivity as compared to conventional electrochemical sandwich immunoassay. To further improve the sensor performance, hyper-branched polyethylenimine grafted poly amino aniline (PEI-g-PAANI) was used as the sensing interface, which enabled immobilization of higher amount of capture antibody. Detection of CEA in human blood serum coupled with wide linear range (0.5-50 ng/ml), good specificity, stability, reproducibility and low detection limit (10 pg/ml) signified the excellence of CUCDs based CEA immunosensor. CUCDs exhibited excitation wavelength dependent fluorescence property and showed strong blue emission under UV irradiation. MTT assay indicated that the material is not toxic towards human dental pulp stem cells (hDPSCs) and MG63 osteosarcoma cells (cell viability > 90%). The present study demonstrates a methodology for valorization of animal waste to a cost-effective carbon based functional nanomaterial for clinical detection of cancer biomarkers.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"37"},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}