Andra Mihali, Allison Young, L. Adler, Michael M. Halassa, W. Ma
{"title":"A Low-Level Perceptual Correlate of Behavioral and Clinical Deficits in ADHD","authors":"Andra Mihali, Allison Young, L. Adler, Michael M. Halassa, W. Ma","doi":"10.1101/199216","DOIUrl":"https://doi.org/10.1101/199216","url":null,"abstract":"In many studies of attention-deficit hyperactivity disorder (ADHD), stimulus encoding and processing (per-ceptual function) and response selection (executive function) have been intertwined. To dissociate deficits in these functions, we introduced a task that parametrically varied low-level stimulus features (orientation and color) for fine-grained analysis of perceptual function. It also required participants to switch their attention between feature dimensions on a trial-by-trial basis, thus taxing executive processes. Furthermore, we used a response paradigm that captured task-irrelevant motor output (TIMO), reflecting failures to use the correct stimulus-response rule. ADHD participants had substantially higher perceptual variability than Controls, especially for orientation, as well as higher TIMO. In both ADHD and Controls, TIMO was strongly affected by the switch manipulation. Across participants, the perceptual variability parameter was correlated with TIMO, suggesting that perceptual deficits are associated with executive function deficits. Based on perceptual variability alone, we were able to classify participants into ADHD and Controls with a mean accuracy of about 77%. Participants’ self-reported General Executive Composite score correlated not only with TIMO but also with the perceptual variability parameter. Our results highlight the role of perceptual deficits in ADHD and the usefulness of computational modeling of behavior in dissociating perceptual from executive processes.","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"137 1","pages":"141 - 163"},"PeriodicalIF":0.0,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80986703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steven M Silverstein, Michael Wibral, William A Phillips
{"title":"Implications of Information Theory for Computational Modeling of Schizophrenia.","authors":"Steven M Silverstein, Michael Wibral, William A Phillips","doi":"10.1162/CPSY_a_00004","DOIUrl":"https://doi.org/10.1162/CPSY_a_00004","url":null,"abstract":"<p><p>Information theory provides a formal framework within which information processing and its disorders can be described. However, information theory has rarely been applied to modeling aspects of the cognitive neuroscience of schizophrenia. The goal of this article is to highlight the benefits of an approach based on information theory, including its recent extensions, for understanding several disrupted neural goal functions as well as related cognitive and symptomatic phenomena in schizophrenia. We begin by demonstrating that foundational concepts from information theory-such as Shannon information, entropy, data compression, block coding, and strategies to increase the signal-to-noise ratio-can be used to provide novel understandings of cognitive impairments in schizophrenia and metrics to evaluate their integrity. We then describe more recent developments in information theory, including the concepts of infomax, coherent infomax, and coding with synergy, to demonstrate how these can be used to develop computational models of schizophrenia-related failures in the tuning of sensory neurons, gain control, perceptual organization, thought organization, selective attention, context processing, predictive coding, and cognitive control. Throughout, we demonstrate how disordered mechanisms may explain both perceptual/cognitive changes and symptom emergence in schizophrenia. Finally, we demonstrate that there is consistency between some information-theoretic concepts and recent discoveries in neurobiology, especially involving the existence of distinct sites for the accumulation of driving input and contextual information prior to their interaction. This convergence can be used to guide future theory, experiment, and treatment development.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"1 ","pages":"82-101"},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1162/CPSY_a_00004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35961856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Yousefi, Darin D Dougherty, Emad N Eskandar, Alik S Widge, Uri T Eden
{"title":"Estimating Dynamic Signals From Trial Data With Censored Values.","authors":"Ali Yousefi, Darin D Dougherty, Emad N Eskandar, Alik S Widge, Uri T Eden","doi":"10.1162/CPSY_a_00003","DOIUrl":"10.1162/CPSY_a_00003","url":null,"abstract":"<p><p>Censored data occur commonly in trial-structured behavioral experiments and many other forms of longitudinal data. They can lead to severe bias and reduction of statistical power in subsequent analyses. Principled approaches for dealing with censored data, such as data imputation and methods based on the complete data's likelihood, work well for estimating fixed features of statistical models but have not been extended to dynamic measures, such as serial estimates of an underlying latent variable over time. Here we propose an approach to the censored-data problem for dynamic behavioral signals. We developed a state-space modeling framework with a censored observation process at the trial timescale. We then developed a filter algorithm to compute the posterior distribution of the state process using the available data. We showed that special cases of this framework can incorporate the three most common approaches to censored observations: ignoring trials with censored data, imputing the censored data values, or using the full information available in the data likelihood. Finally, we derived a computationally efficient approximate Gaussian filter that is similar in structure to a Kalman filter, but that efficiently accounts for censored data. We compared the performances of these methods in a simulation study and provide recommendations of approaches to use, based on the expected amount of censored data in an experiment. These new techniques can broadly be applied in many research domains in which censored data interfere with estimation, including survival analysis and other clinical trial applications.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"1 ","pages":"58-81"},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1162/CPSY_a_00003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35962433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package.","authors":"Woo-Young Ahn, Nathaniel Haines, Lei Zhang","doi":"10.1162/CPSY_a_00002","DOIUrl":"10.1162/CPSY_a_00002","url":null,"abstract":"<p><p>Reinforcement learning and decision-making (RLDM) provide a quantitative framework and computational theories with which we can disentangle psychiatric conditions into the basic dimensions of neurocognitive functioning. RLDM offer a novel approach to assessing and potentially diagnosing psychiatric patients, and there is growing enthusiasm for both RLDM and computational psychiatry among clinical researchers. Such a framework can also provide insights into the brain substrates of particular RLDM processes, as exemplified by model-based analysis of data from functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). However, researchers often find the approach too technical and have difficulty adopting it for their research. Thus, a critical need remains to develop a user-friendly tool for the wide dissemination of computational psychiatric methods. We introduce an R package called hBayesDM (hierarchical Bayesian modeling of Decision-Making tasks), which offers computational modeling of an array of RLDM tasks and social exchange games. The hBayesDM package offers state-of-the-art hierarchical Bayesian modeling, in which both individual and group parameters (i.e., posterior distributions) are estimated simultaneously in a mutually constraining fashion. At the same time, the package is extremely user-friendly: users can perform computational modeling, output visualization, and Bayesian model comparisons, each with a single line of coding. Users can also extract the trial-by-trial latent variables (e.g., prediction errors) required for model-based fMRI/EEG. With the hBayesDM package, we anticipate that anyone with minimal knowledge of programming can take advantage of cutting-edge computational-modeling approaches to investigate the underlying processes of and interactions between multiple decision-making (e.g., goal-directed, habitual, and Pavlovian) systems. In this way, we expect that the hBayesDM package will contribute to the dissemination of advanced modeling approaches and enable a wide range of researchers to easily perform computational psychiatric research within different populations.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"1 ","pages":"24-57"},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35961862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational Nosology and Precision Psychiatry.","authors":"Karl J Friston, A David Redish, Joshua A Gordon","doi":"10.1162/CPSY_a_00001","DOIUrl":"10.1162/CPSY_a_00001","url":null,"abstract":"<p><p>This article provides an illustrative treatment of psychiatric morbidity that offers an alternative to the standard nosological model in psychiatry. It considers what would happen if we treated diagnostic categories not as <i>causes</i> of signs and symptoms, but as diagnostic <i>consequences</i> of psychopathology and pathophysiology. This reformulation (of the standard nosological model) opens the door to a more natural description of how patients present-and of their likely responses to therapeutic interventions. In brief, we describe a model that generates symptoms, signs, and diagnostic outcomes from latent psychopathological states. In turn, psychopathology is caused by pathophysiological processes that are perturbed by (etiological) causes such as predisposing factors, life events, and therapeutic interventions. The key advantages of this nosological formulation include (i) the formal integration of diagnostic (e.g., DSM) categories and latent psychopathological constructs (e.g., the dimensions of the Research Domain Criteria); (ii) the provision of a hypothesis or model space that accommodates formal, evidence-based hypothesis testing (using Bayesian model comparison); and (iii) the ability to predict therapeutic responses (using a posterior predictive density), as in precision medicine. These and other advantages are largely promissory at present: The purpose of this article is to show what might be possible, through the use of idealized simulations.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"1 ","pages":"2-23"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35794609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Learning and Choice in Mood Disorders: Searching for the Computational Parameters of Anhedonia.","authors":"Oliver J Robinson, Henry W Chase","doi":"10.1162/CPSY_a_00009","DOIUrl":"10.1162/CPSY_a_00009","url":null,"abstract":"<p><p>Computational approaches are increasingly being used to model behavioral and neural processes in mood and anxiety disorders. Here we explore the extent to which the parameters of popular learning and decision-making models are implicated in anhedonic symptoms of major depression. We first highlight the parameters of reinforcement learning that have been implicated in anhedonia, focusing, in particular, on the role that choice variability (i.e., \"temperature\") may play in explaining heterogeneity across previous findings. We then turn to neuroimaging findings implicating attenuated ventral striatum response in anhedonic responses and discuss possible causes of the heterogeneity in the literature. Taken together, the reviewed findings highlight the potential of the computational approach in teasing apart the observed heterogeneity in both behavioral and functional imaging results. Nevertheless, considerable challenges remain, and we conclude with five unresolved questions that seek to address issues highlighted by the reviewed data.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"1 1","pages":"208-233"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1162/CPSY_a_00009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35794615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}