{"title":"Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package.","authors":"Woo-Young Ahn, Nathaniel Haines, Lei Zhang","doi":"10.1162/CPSY_a_00002","DOIUrl":"10.1162/CPSY_a_00002","url":null,"abstract":"<p><p>Reinforcement learning and decision-making (RLDM) provide a quantitative framework and computational theories with which we can disentangle psychiatric conditions into the basic dimensions of neurocognitive functioning. RLDM offer a novel approach to assessing and potentially diagnosing psychiatric patients, and there is growing enthusiasm for both RLDM and computational psychiatry among clinical researchers. Such a framework can also provide insights into the brain substrates of particular RLDM processes, as exemplified by model-based analysis of data from functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). However, researchers often find the approach too technical and have difficulty adopting it for their research. Thus, a critical need remains to develop a user-friendly tool for the wide dissemination of computational psychiatric methods. We introduce an R package called hBayesDM (hierarchical Bayesian modeling of Decision-Making tasks), which offers computational modeling of an array of RLDM tasks and social exchange games. The hBayesDM package offers state-of-the-art hierarchical Bayesian modeling, in which both individual and group parameters (i.e., posterior distributions) are estimated simultaneously in a mutually constraining fashion. At the same time, the package is extremely user-friendly: users can perform computational modeling, output visualization, and Bayesian model comparisons, each with a single line of coding. Users can also extract the trial-by-trial latent variables (e.g., prediction errors) required for model-based fMRI/EEG. With the hBayesDM package, we anticipate that anyone with minimal knowledge of programming can take advantage of cutting-edge computational-modeling approaches to investigate the underlying processes of and interactions between multiple decision-making (e.g., goal-directed, habitual, and Pavlovian) systems. In this way, we expect that the hBayesDM package will contribute to the dissemination of advanced modeling approaches and enable a wide range of researchers to easily perform computational psychiatric research within different populations.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"1 ","pages":"24-57"},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35961862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational Nosology and Precision Psychiatry.","authors":"Karl J Friston, A David Redish, Joshua A Gordon","doi":"10.1162/CPSY_a_00001","DOIUrl":"10.1162/CPSY_a_00001","url":null,"abstract":"<p><p>This article provides an illustrative treatment of psychiatric morbidity that offers an alternative to the standard nosological model in psychiatry. It considers what would happen if we treated diagnostic categories not as <i>causes</i> of signs and symptoms, but as diagnostic <i>consequences</i> of psychopathology and pathophysiology. This reformulation (of the standard nosological model) opens the door to a more natural description of how patients present-and of their likely responses to therapeutic interventions. In brief, we describe a model that generates symptoms, signs, and diagnostic outcomes from latent psychopathological states. In turn, psychopathology is caused by pathophysiological processes that are perturbed by (etiological) causes such as predisposing factors, life events, and therapeutic interventions. The key advantages of this nosological formulation include (i) the formal integration of diagnostic (e.g., DSM) categories and latent psychopathological constructs (e.g., the dimensions of the Research Domain Criteria); (ii) the provision of a hypothesis or model space that accommodates formal, evidence-based hypothesis testing (using Bayesian model comparison); and (iii) the ability to predict therapeutic responses (using a posterior predictive density), as in precision medicine. These and other advantages are largely promissory at present: The purpose of this article is to show what might be possible, through the use of idealized simulations.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"1 ","pages":"2-23"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35794609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Learning and Choice in Mood Disorders: Searching for the Computational Parameters of Anhedonia.","authors":"Oliver J Robinson, Henry W Chase","doi":"10.1162/CPSY_a_00009","DOIUrl":"10.1162/CPSY_a_00009","url":null,"abstract":"<p><p>Computational approaches are increasingly being used to model behavioral and neural processes in mood and anxiety disorders. Here we explore the extent to which the parameters of popular learning and decision-making models are implicated in anhedonic symptoms of major depression. We first highlight the parameters of reinforcement learning that have been implicated in anhedonia, focusing, in particular, on the role that choice variability (i.e., \"temperature\") may play in explaining heterogeneity across previous findings. We then turn to neuroimaging findings implicating attenuated ventral striatum response in anhedonic responses and discuss possible causes of the heterogeneity in the literature. Taken together, the reviewed findings highlight the potential of the computational approach in teasing apart the observed heterogeneity in both behavioral and functional imaging results. Nevertheless, considerable challenges remain, and we conclude with five unresolved questions that seek to address issues highlighted by the reviewed data.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"1 1","pages":"208-233"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1162/CPSY_a_00009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35794615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}