Computational Nosology and Precision Psychiatry.

Computational psychiatry (Cambridge, Mass.) Pub Date : 2017-01-01 Epub Date: 2017-09-08 DOI:10.1162/CPSY_a_00001
Karl J Friston, A David Redish, Joshua A Gordon
{"title":"Computational Nosology and Precision Psychiatry.","authors":"Karl J Friston, A David Redish, Joshua A Gordon","doi":"10.1162/CPSY_a_00001","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides an illustrative treatment of psychiatric morbidity that offers an alternative to the standard nosological model in psychiatry. It considers what would happen if we treated diagnostic categories not as <i>causes</i> of signs and symptoms, but as diagnostic <i>consequences</i> of psychopathology and pathophysiology. This reformulation (of the standard nosological model) opens the door to a more natural description of how patients present-and of their likely responses to therapeutic interventions. In brief, we describe a model that generates symptoms, signs, and diagnostic outcomes from latent psychopathological states. In turn, psychopathology is caused by pathophysiological processes that are perturbed by (etiological) causes such as predisposing factors, life events, and therapeutic interventions. The key advantages of this nosological formulation include (i) the formal integration of diagnostic (e.g., DSM) categories and latent psychopathological constructs (e.g., the dimensions of the Research Domain Criteria); (ii) the provision of a hypothesis or model space that accommodates formal, evidence-based hypothesis testing (using Bayesian model comparison); and (iii) the ability to predict therapeutic responses (using a posterior predictive density), as in precision medicine. These and other advantages are largely promissory at present: The purpose of this article is to show what might be possible, through the use of idealized simulations.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"1 ","pages":"2-23"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational psychiatry (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/CPSY_a_00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides an illustrative treatment of psychiatric morbidity that offers an alternative to the standard nosological model in psychiatry. It considers what would happen if we treated diagnostic categories not as causes of signs and symptoms, but as diagnostic consequences of psychopathology and pathophysiology. This reformulation (of the standard nosological model) opens the door to a more natural description of how patients present-and of their likely responses to therapeutic interventions. In brief, we describe a model that generates symptoms, signs, and diagnostic outcomes from latent psychopathological states. In turn, psychopathology is caused by pathophysiological processes that are perturbed by (etiological) causes such as predisposing factors, life events, and therapeutic interventions. The key advantages of this nosological formulation include (i) the formal integration of diagnostic (e.g., DSM) categories and latent psychopathological constructs (e.g., the dimensions of the Research Domain Criteria); (ii) the provision of a hypothesis or model space that accommodates formal, evidence-based hypothesis testing (using Bayesian model comparison); and (iii) the ability to predict therapeutic responses (using a posterior predictive density), as in precision medicine. These and other advantages are largely promissory at present: The purpose of this article is to show what might be possible, through the use of idealized simulations.

Abstract Image

Abstract Image

Abstract Image

计算病理学和精准精神病学。
本文对精神病的发病率进行了说明性处理,为精神病学的标准分类模式提供了另一种选择。它考虑了如果我们不把诊断类别当作体征和症状的原因,而是当作精神病理学和病理生理学的诊断结果,会发生什么情况。这种(标准病理模式的)重新表述为更自然地描述病人的表现--以及他们对治疗干预可能做出的反应--打开了一扇大门。简而言之,我们描述了一种从潜在心理病理状态产生症状、体征和诊断结果的模式。反过来,精神病理学又是由病理生理过程引起的,而病理生理过程又受到(病因)原因的干扰,如易感因素、生活事件和治疗干预。这种病理学表述的主要优点包括:(i) 正式整合了诊断(如 DSM)类别和潜在的精神病理学构造(如研究领域标准的维度);(ii) 提供了一个假设或模型空间,可进行正式的循证假设检验(使用贝叶斯模型比较);(iii) 能够预测治疗反应(使用后验预测密度),就像精准医学中的那样。目前,这些优势和其他优势在很大程度上是可望而不可及的:本文旨在通过使用理想化的模拟来展示可能实现的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信