情绪障碍的学习与选择:寻找快乐障碍的计算参数。

Computational psychiatry (Cambridge, Mass.) Pub Date : 2017-01-01 Epub Date: 2017-12-29 DOI:10.1162/CPSY_a_00009
Oliver J Robinson, Henry W Chase
{"title":"情绪障碍的学习与选择:寻找快乐障碍的计算参数。","authors":"Oliver J Robinson,&nbsp;Henry W Chase","doi":"10.1162/CPSY_a_00009","DOIUrl":null,"url":null,"abstract":"<p><p>Computational approaches are increasingly being used to model behavioral and neural processes in mood and anxiety disorders. Here we explore the extent to which the parameters of popular learning and decision-making models are implicated in anhedonic symptoms of major depression. We first highlight the parameters of reinforcement learning that have been implicated in anhedonia, focusing, in particular, on the role that choice variability (i.e., \"temperature\") may play in explaining heterogeneity across previous findings. We then turn to neuroimaging findings implicating attenuated ventral striatum response in anhedonic responses and discuss possible causes of the heterogeneity in the literature. Taken together, the reviewed findings highlight the potential of the computational approach in teasing apart the observed heterogeneity in both behavioral and functional imaging results. Nevertheless, considerable challenges remain, and we conclude with five unresolved questions that seek to address issues highlighted by the reviewed data.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"1 1","pages":"208-233"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1162/CPSY_a_00009","citationCount":"52","resultStr":"{\"title\":\"Learning and Choice in Mood Disorders: Searching for the Computational Parameters of Anhedonia.\",\"authors\":\"Oliver J Robinson,&nbsp;Henry W Chase\",\"doi\":\"10.1162/CPSY_a_00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational approaches are increasingly being used to model behavioral and neural processes in mood and anxiety disorders. Here we explore the extent to which the parameters of popular learning and decision-making models are implicated in anhedonic symptoms of major depression. We first highlight the parameters of reinforcement learning that have been implicated in anhedonia, focusing, in particular, on the role that choice variability (i.e., \\\"temperature\\\") may play in explaining heterogeneity across previous findings. We then turn to neuroimaging findings implicating attenuated ventral striatum response in anhedonic responses and discuss possible causes of the heterogeneity in the literature. Taken together, the reviewed findings highlight the potential of the computational approach in teasing apart the observed heterogeneity in both behavioral and functional imaging results. Nevertheless, considerable challenges remain, and we conclude with five unresolved questions that seek to address issues highlighted by the reviewed data.</p>\",\"PeriodicalId\":72664,\"journal\":{\"name\":\"Computational psychiatry (Cambridge, Mass.)\",\"volume\":\"1 1\",\"pages\":\"208-233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1162/CPSY_a_00009\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational psychiatry (Cambridge, Mass.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/CPSY_a_00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational psychiatry (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/CPSY_a_00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

计算方法越来越多地被用于对情绪和焦虑障碍的行为和神经过程进行建模。在这里,我们探讨了流行的学习和决策模型的参数在多大程度上与严重抑郁症的无快感症状有关。我们首先强调了与快感缺乏有关的强化学习参数,特别关注选择变异性(即“温度”)在解释先前研究结果的异质性方面可能发挥的作用。然后,我们转向神经影像学的发现,暗示腹侧纹状体反应减弱,并讨论了文献中异质性的可能原因。总之,综述的发现突出了计算方法在梳理行为和功能成像结果中观察到的异质性方面的潜力。尽管如此,仍然存在着相当大的挑战,我们最后提出了五个尚未解决的问题,这些问题试图解决审查数据所强调的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Learning and Choice in Mood Disorders: Searching for the Computational Parameters of Anhedonia.

Learning and Choice in Mood Disorders: Searching for the Computational Parameters of Anhedonia.

Learning and Choice in Mood Disorders: Searching for the Computational Parameters of Anhedonia.

Computational approaches are increasingly being used to model behavioral and neural processes in mood and anxiety disorders. Here we explore the extent to which the parameters of popular learning and decision-making models are implicated in anhedonic symptoms of major depression. We first highlight the parameters of reinforcement learning that have been implicated in anhedonia, focusing, in particular, on the role that choice variability (i.e., "temperature") may play in explaining heterogeneity across previous findings. We then turn to neuroimaging findings implicating attenuated ventral striatum response in anhedonic responses and discuss possible causes of the heterogeneity in the literature. Taken together, the reviewed findings highlight the potential of the computational approach in teasing apart the observed heterogeneity in both behavioral and functional imaging results. Nevertheless, considerable challenges remain, and we conclude with five unresolved questions that seek to address issues highlighted by the reviewed data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信