ChemSystemsChem最新文献

筛选
英文 中文
Slow Freeze-Thaw Cycles Enhanced Hybridization of Kilobase DNA with Long Complementary Sticky Ends 缓慢的冻融循环增强了千碱基 DNA 与长互补粘性末端的杂交
IF 3.1
ChemSystemsChem Pub Date : 2024-05-14 DOI: 10.1002/syst.202400025
Dr. Natsumi Noda, Kohei Nomura, Naho Takahashi, Dr. Fumitaka Hashiya, Prof. Dr. Hiroshi Abe, Prof. Dr. Tomoaki Matsuura
{"title":"Slow Freeze-Thaw Cycles Enhanced Hybridization of Kilobase DNA with Long Complementary Sticky Ends","authors":"Dr. Natsumi Noda,&nbsp;Kohei Nomura,&nbsp;Naho Takahashi,&nbsp;Dr. Fumitaka Hashiya,&nbsp;Prof. Dr. Hiroshi Abe,&nbsp;Prof. Dr. Tomoaki Matsuura","doi":"10.1002/syst.202400025","DOIUrl":"10.1002/syst.202400025","url":null,"abstract":"<p>The creation of large information molecules may have played an essential role in the origins of life. In this study, we conducted slow freeze-thaw (F/T) experiments to test the possibility of enhanced hybridization between the complementary sticky ends attached to kilobase-sized DNA fragments at sub-nanomolar concentrations. DNA fragments of 2- and 3-kilobase pairs (kbp) with 50-base complementary sticky ends that can form 5 kbp-sized hybridization products were mixed. While simple incubation provided little hybridization product, significantly effective hybridization was observed after freezing and thawing at a controlled time rate (&lt;0.3 K min<sup>−1</sup>), even with small DNA concentrations (&lt;1 nM). Furthermore, slow thawing had a more effect on hybridization than slow freezing. The reaction efficiency was reduced by rapid thawing instead of slow thawing, suggesting that the eutectic phase concentration played an important role in hybridization. A slow F/T cycle was effective even for the hybridization reaction between two 10 kbp DNA fragments, which yielded a 20 kbp product at sub-nanomolar concentrations. Repeating the slow F/T cycle significantly improved the reaction efficiency. The possible role of the F/T cycles in early Earth environments is discussed here.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140979943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomous Development of Compositional Diversity in Self‐spreading Flat Protocells 自蔓延扁平原胞中成分多样性的自主发展
ChemSystemsChem Pub Date : 2024-05-12 DOI: 10.1002/syst.202400029
Irep Gözen, Stephen Mann, Aldo Jesorka
{"title":"Autonomous Development of Compositional Diversity in Self‐spreading Flat Protocells","authors":"Irep Gözen, Stephen Mann, Aldo Jesorka","doi":"10.1002/syst.202400029","DOIUrl":"https://doi.org/10.1002/syst.202400029","url":null,"abstract":"An experimental pathway to the spontaneous generation of compositionally diverse synthetic protocells is presented. The pathway is initiated by flat giant unilamellar vesicles (FGUVs) that originate from compositionally different multilamellar lipid reservoirs and undergo spontaneous spreading across solid surfaces. On contact, the spreading FGUVs merge to produce a concentration gradient in membrane lipids across the fusion interface. Subsequent reconstruction through a series of shape transformations produces a network of nanotube‐connected lipid vesicles that inherit different ratios of the membrane constituents derived from the bilayers of the parent FGUVs. The fusion process leads to the engulfment of small FGUVs by larger FGUVs, mimicking predator‐prey behavior in which the observable characteristics of the prey are lost but the constituents are carried by the predator FGUV to the next generation of lipid vesicles. We speculate that our results could provide a feasible pathway to autonomous protocell diversification in origin of life theories and highlight the possible role of solid surfaces in the development of diversity and rudimentary speciation of natural protocells on the early Earth.","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140987127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Molecular Systems for Complex Functions Based on DNA Nanotechnology and Cell-Sized Lipid Vesicles 基于 DNA 纳米技术和细胞大小脂质囊泡的复杂功能人工分子系统
IF 3.1
ChemSystemsChem Pub Date : 2024-05-10 DOI: 10.1002/syst.202400021
Prof. Dr. Yusuke Sato
{"title":"Artificial Molecular Systems for Complex Functions Based on DNA Nanotechnology and Cell-Sized Lipid Vesicles","authors":"Prof. Dr. Yusuke Sato","doi":"10.1002/syst.202400021","DOIUrl":"10.1002/syst.202400021","url":null,"abstract":"<p>Cells are highly functional and complex molecular systems. Artificially creating such systems remains a challenge, which has been extensively studied in various research fields, including synthetic biology and molecular robotics. DNA nanotechnology is a powerful tool for bottom-up engineering for constructing functional nanostructures or chemical reaction networks which can be utilized as components for artificial molecular systems. Encapsulation of these components into a giant unilamellar vesicle (GUV) composed of a lipid bilayer, the base structure of the cellular membrane, results in a functional cell-sized structure that partially mimics some cellular functions. This review discusses the studies contributing to the construction of GUV-based artificial molecular systems based on DNA nanotechnology. Molecular transport and signal transduction through lipid membranes are essential to uptake molecules from the environment and respond to stimuli. Membrane shaping relates to various functions, including motility and signaling. A chemical reaction network is required to autonomously regulate the system‘s functions. This review describes the functions realized using DNA nanostructures and DNA reaction networks. Given the designability and programmability of DNA nanotechnology, it may be possible that the functionality of artificial molecular systems could be comparable to or even surpass that of natural molecular systems.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140991172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covalent Linkages Used in Prebiotic Chemistry for RNA-Templated Amino Acid Transfer and Peptide Synthesis 用于 RNA 引发的氨基酸转移和多肽合成的前生物化学中的共价连接体
IF 3.1
ChemSystemsChem Pub Date : 2024-05-08 DOI: 10.1002/syst.202400030
Dr. Luis Escobar
{"title":"Covalent Linkages Used in Prebiotic Chemistry for RNA-Templated Amino Acid Transfer and Peptide Synthesis","authors":"Dr. Luis Escobar","doi":"10.1002/syst.202400030","DOIUrl":"10.1002/syst.202400030","url":null,"abstract":"<p>Biological translation is a universal process taking place in the ribosome. It involves the synthesis of a protein with a particular sequence from the information encoded in a messenger RNA and the amino acids carried by transfer RNAs with the assistance of specific enzymes. However, the origin of translation in the prebiotic world and, thus, in the absence of enzymes is difficult to envisage. Past and recent studies proposed different prebiotic models, following top-down and bottom-up approaches, for the origin and evolution of a primitive ribosome. The bottom-up models made use of distinct covalent linkages to connect RNA strands with amino acids and peptides. In this review, I focus on the covalent linkages used in these prebiotic models: acyl phosphate mixed anhydrides, phosphoramidates and ureas. I describe their syntheses under prebiotically plausible reaction conditions, as well as include their main conventional preparation methods. I also comment on their properties and chemical stabilities in aqueous solution. Finally, I examine the functions of the described covalent linkages in prebiotic processes involving RNA-templated amino acid transfer and peptide synthesis.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140998488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Temperature on Calcium-Based Chemical Garden Growth 温度对钙基化学花园生长的影响
IF 3.1
ChemSystemsChem Pub Date : 2024-04-29 DOI: 10.1002/syst.202400012
Dr. Pamela Knoll, Dr. Corentin C. Loron
{"title":"Effect of Temperature on Calcium-Based Chemical Garden Growth","authors":"Dr. Pamela Knoll,&nbsp;Dr. Corentin C. Loron","doi":"10.1002/syst.202400012","DOIUrl":"https://doi.org/10.1002/syst.202400012","url":null,"abstract":"<p>Hydrothermal vents maintain far-from equilibrium conditions that may have provided the necessary settings for the origin of life. To understand reactions under these physicochemical conditions, scientists have turned to the classic demonstration experiment, chemical gardens. The self-organization of precipitate tubes separates high and low pH environments similarly to the naturally occurring geological structures. Here, we report calcium-based chemical gardens forming in solutions containing anions of silicate, carbonate, or a mixture of the two in 100 °C and 23 °C environments. Under high temperature conditions, chemical gardens tend to have faster average growth velocities and form taller structures. We measure the composition of the precipitate tubes using Fourier transform infrared spectroscopy and find the formation of all polymorphs of calcium carbonate along with calcium silicates.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Autonomous Materials–Challenges in Chemical Communication 迈向自主材料--化学交流中的挑战
ChemSystemsChem Pub Date : 2024-04-29 DOI: 10.1002/syst.202400036
P. Jarne de Jong, Foteini Trigka, Dr. Michael M. Lerch
{"title":"Towards Autonomous Materials–Challenges in Chemical Communication","authors":"P. Jarne de Jong,&nbsp;Foteini Trigka,&nbsp;Dr. Michael M. Lerch","doi":"10.1002/syst.202400036","DOIUrl":"https://doi.org/10.1002/syst.202400036","url":null,"abstract":"<p>The front cover artwork is provided by the Lerch group at the Stratingh Institute for Chemistry at the University of Groningen, The Netherlands. The cover illustrates a robot communicating with surrounding entities using various (chemical) signals. Not all communication and signal processing are successful, hence the slight confusion on the robot′s face. The cover alludes to the breadth of and future challenges for chemical communication within autonomous materials and robots. Cover design by Dr. Kaja Sitkowska. Read the full text of the Concept at 10.1002/syst.202400005.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140949172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Liquid-Liquid Phase Separation of Benzene-1,3,5-Tricarboxamide in Water 揭示水中苯-1,3,5-三甲酰胺的液-液相分离过程
IF 3.1
ChemSystemsChem Pub Date : 2024-04-23 DOI: 10.1002/syst.202400013
Mohit Kumar, Job. N. S. Hanssen, Prof. Dr. Shikha Dhiman
{"title":"Unveiling the Liquid-Liquid Phase Separation of Benzene-1,3,5-Tricarboxamide in Water","authors":"Mohit Kumar,&nbsp;Job. N. S. Hanssen,&nbsp;Prof. Dr. Shikha Dhiman","doi":"10.1002/syst.202400013","DOIUrl":"10.1002/syst.202400013","url":null,"abstract":"<p>The intricate interplay between self-assembly and phase separation orchestrates biomolecular organization inside cells, thereby dictating the formation of vital structures such as protein assemblies and membraneless organelles (MLOs). However, in the context of supramolecular polymerization, these fundamental processes have traditionally been studied separately. This study reevaluates the supramolecular polymerization process to unveil the presence of phase-separated droplet state. Utilizing the well-studied benzene-1,3,5-tricarboxamide (BTA) supramolecular motif, we explore its thermally driven liquid-liquid phase separation (LLPS). Thermodynamic and kinetic analysis, employing temperature-dependent spectroscopic and microscopic techniques, elucidates the distinct BTA states and their evolution towards the thermodynamic fiber state. This research sheds light on the existence of hidden phases of supramolecular monomers, emphasizing the delicate balance of non-covalent interactions among monomers and with solvents in governing self-assembly vs. phase separation. This is particularly important in comprehending phase separation in the biological realm such as in MLOs, and for applications such as condensate-modifying therapeutics.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140669487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Towards Autonomous Materials–Challenges in Chemical Communication (ChemSystemsChem 3/2024) 封面:迈向自主材料--化学交流中的挑战(ChemSystemsChem 3/2024)
ChemSystemsChem Pub Date : 2024-04-22 DOI: 10.1002/syst.202400032
P. Jarne de Jong, Foteini Trigka, Dr. Michael M. Lerch
{"title":"Front Cover: Towards Autonomous Materials–Challenges in Chemical Communication (ChemSystemsChem 3/2024)","authors":"P. Jarne de Jong,&nbsp;Foteini Trigka,&nbsp;Dr. Michael M. Lerch","doi":"10.1002/syst.202400032","DOIUrl":"https://doi.org/10.1002/syst.202400032","url":null,"abstract":"<p><b>The Front Cover</b> illustrates a robot communicating with surrounding entities using various (chemical) signals. Not all communication and signal processing is successful, hence the slight confusion on the robot′s face. The cover alludes to the breadth of and future challenges for chemical communication within autonomous materials and robots. Cover design by Dr. Kaja Sitkowska. More information can be found in the Concept by Michael M. Lerch and co-workers.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140949318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane Transport, Molecular Machines, and Maxwell's Demon 膜传输、分子机器和麦克斯韦恶魔
ChemSystemsChem Pub Date : 2024-04-22 DOI: 10.1002/syst.202400033
Dr. Stefan Borsley
{"title":"Membrane Transport, Molecular Machines, and Maxwell's Demon","authors":"Dr. Stefan Borsley","doi":"10.1002/syst.202400033","DOIUrl":"https://doi.org/10.1002/syst.202400033","url":null,"abstract":"<p><b>The Cover Feature</b> shows a Maxwell's Demon opening a trapdoor in a lipid-bilayer membrane to allow ions to move in one direction but not the other. This Concept underpins ratchet mechanisms, which have been used to develop small-molecule machines, and might soon enable the construction of artificial transmembrane pumps. More information can be found in the Concept by Stefan Borsley.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140949319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomolecular Condensates: From Bacterial Compartments to Incubator Spaces of Emergent Chemical Systems in Matter-to-Life Transitions 生物分子凝聚物:从细菌区室到物质到生命转变过程中新兴化学系统的孵化器空间
IF 3.1
ChemSystemsChem Pub Date : 2024-04-17 DOI: 10.1002/syst.202400011
Wade E. Schnorr, Prof. W. Seth Childers
{"title":"Biomolecular Condensates: From Bacterial Compartments to Incubator Spaces of Emergent Chemical Systems in Matter-to-Life Transitions","authors":"Wade E. Schnorr,&nbsp;Prof. W. Seth Childers","doi":"10.1002/syst.202400011","DOIUrl":"10.1002/syst.202400011","url":null,"abstract":"<p>At the earliest development of prebiotic chemistry, bacterial cells were primarily viewed as “bags of molecules.” This longstanding viewpoint shaped and biased early research about life's origins, setting an initial target when considering the path from prebiotic chemistry to modern life. The two fields of systems chemistry and bacterial cell biology seem like oil and water, but each brings their own perspectives and methods to consider “what is life?”. Here, we review the most recent discoveries in bacterial cell biology, focusing on biomolecular condensates to consider how they may impact our thinking of matter-to-life transitions. The presence of condensate compartments in the bacterial domain of life strengthens the hypothesis that condensates play roles in coordinating chemical systems in life's origins. Bacterial condensates have been shown to enhance enzymatic reactions, tune substrate specificity, and be responsive to environmental conditions and metabolites. Systems chemistry studies have further illuminated the unique chemical environment within condensates and strategies for logically tying chemical processes to the formation and dissolution of condensates. We consider the potential of biomolecular condensates to provide “incubator spaces” where new chemistries can develop and examine future challenges regarding the capability of condensates to yield emergent chemical systems capable of selection.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140693095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信