ChemSystemsChem最新文献

筛选
英文 中文
ChemSystemsChem – On the Up and Up 化学系统化学
ChemSystemsChem Pub Date : 2023-01-13 DOI: 10.1002/syst.202200048
Dr. Deanne Nolan, Dr. Leana Travaglini
{"title":"ChemSystemsChem – On the Up and Up","authors":"Dr. Deanne Nolan,&nbsp;Dr. Leana Travaglini","doi":"10.1002/syst.202200048","DOIUrl":"10.1002/syst.202200048","url":null,"abstract":"<p><b>Into another year with</b> <i><b>ChemSystemsChem</b></i>! In this Editorial, the editors summarize the developments at the journal in 2022, highlight new projects for 2023 and introduce the renewed Editorial Advisory Board.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49284329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acid Autocatalysis Best Served Hot: The Chlorate–Sulfite–Gluconolactone System as a Thermochemical Clock 酸的自动催化最好是热的:作为热化学时钟的氯酸盐-亚硫酸盐-葡萄糖醇内酯系统
ChemSystemsChem Pub Date : 2023-01-10 DOI: 10.1002/syst.202200042
Ronny Kürsteiner, Dr. Guido Panzarasa
{"title":"Acid Autocatalysis Best Served Hot: The Chlorate–Sulfite–Gluconolactone System as a Thermochemical Clock","authors":"Ronny Kürsteiner,&nbsp;Dr. Guido Panzarasa","doi":"10.1002/syst.202200042","DOIUrl":"10.1002/syst.202200042","url":null,"abstract":"<p>The autonomous activation of acid-autocatalyzed sulfite–halogenate (iodate, bromate, chlorate) reactions is programmed using slow acid generators (δ-gluconolactone GL, and 1,3-propanesultone PrS). A remarkable correlation is found between the pH- and temperature-time profiles, especially for the chlorate–sulfite–GL system. Further optimization of the latter resulted in a chemical system able to generate sudden temperature and pH changes after a tailorable induction time, that is a “thermochemical clock”.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45439032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Designed Complex Peptide-Based Adaptive Systems: A Bottom-Up Approach (ChemSystemsChem 1/2023) 封面特写:设计的基于复杂肽的自适应系统:自下而上的方法(ChemSystemsChem1/2023)
ChemSystemsChem Pub Date : 2022-12-21 DOI: 10.1002/syst.202200049
Dr. Salma Kassem, Prof. Dr. Rein V. Ulijn
{"title":"Cover Feature: Designed Complex Peptide-Based Adaptive Systems: A Bottom-Up Approach (ChemSystemsChem 1/2023)","authors":"Dr. Salma Kassem,&nbsp;Prof. Dr. Rein V. Ulijn","doi":"10.1002/syst.202200049","DOIUrl":"https://doi.org/10.1002/syst.202200049","url":null,"abstract":"<p><b>The Cover Feature</b> shows a network of interacting peptide components that illustrates complex peptide-based systems. System complexity is built from the bottom-up through self-organization and functional reconfiguration of interacting and inter-converting peptide sequences. Cover design by Ella Maru Studio. More information can be found in the Review by Salma Kassem and Rein V. Ulijn.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50139684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Propulsion Mode Switching of a Briggs–Rauscher Droplet 布里格斯-劳舍尔液滴的自推进模式切换
ChemSystemsChem Pub Date : 2022-12-21 DOI: 10.1002/syst.202200030
Dr. Masakazu Kuze, Yujin Kubodera, Hiromi Hashishita, Prof. Muneyuki Matsuo, Prof. Hiraku Nishimori, Prof. Satoshi Nakata
{"title":"Self-Propulsion Mode Switching of a Briggs–Rauscher Droplet","authors":"Dr. Masakazu Kuze,&nbsp;Yujin Kubodera,&nbsp;Hiromi Hashishita,&nbsp;Prof. Muneyuki Matsuo,&nbsp;Prof. Hiraku Nishimori,&nbsp;Prof. Satoshi Nakata","doi":"10.1002/syst.202200030","DOIUrl":"10.1002/syst.202200030","url":null,"abstract":"<p>Autocatalysis induces nonlinearity in chemical and/or biological systems, and is important for understanding the emergence of life in nature. To enhance the autonomy of self-propulsion in an open system, we introduced a Briggs–Rauscher (BR) reaction into self-propelled droplet systems. In this study, a droplet composed of a BR solution in an oil phase containing a monoolein surfactant exhibited various types of motion, that is, continuous, oscillatory, and no motions of the droplet. The motions observed depended on the concentrations of potassium iodate and hydrogen peroxide in the BR solution. These results indicated that the driving force in this system was generated by the reaction between monoolein and one of the intermediates of the BR reaction, iodine. Our system can contribute to the establishment of a novel biomimetic object in which the autocatalytic process acts as a key factor for inducing various types of motion.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46366822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupling Reversible Clustering of DNA-Coated Gold Nanoparticles with Chemothermal Cycloaddition Reaction DNA包覆金纳米颗粒的可逆聚类与化学热环加成反应
ChemSystemsChem Pub Date : 2022-12-15 DOI: 10.1002/syst.202200031
Dr. Joscha Kruse, Dr. Maria Sanromán-Iglesias, Aimar Marauri, Dr. Ivan Rivilla, Dr. Marek Grzelczak
{"title":"Coupling Reversible Clustering of DNA-Coated Gold Nanoparticles with Chemothermal Cycloaddition Reaction","authors":"Dr. Joscha Kruse,&nbsp;Dr. Maria Sanromán-Iglesias,&nbsp;Aimar Marauri,&nbsp;Dr. Ivan Rivilla,&nbsp;Dr. Marek Grzelczak","doi":"10.1002/syst.202200031","DOIUrl":"10.1002/syst.202200031","url":null,"abstract":"<p>Stimuli-responsive, optically-active colloidal systems are convenient signal transducers capable of monitoring environmental changes at the nanoscale. We report on the coupling of chemo-thermal cycloaddition reaction with temperature-sensitive, DNA-coated gold nanoparticles. We found that the concentration of chemical fuel, dictating the temperature of the mixture, is a primary ingredient in controlling the extent of the reversible clustering of gold nanoparticles. Our results show that rational coupling of chemical and colloidal systems can open up new possibilities in tracking the change of local temperature using aggregation/redispersion of nanoparticles.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47849422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Tuning the Kinetic Trapping in Chemically Fueled Self-Assembly 化学燃料自组装中动力学陷阱的调节
ChemSystemsChem Pub Date : 2022-12-15 DOI: 10.1002/syst.202200046
Brigitte A. K. Kriebisch, Christine M. E. Kriebisch, Alexander M. Bergmann, Dr. Caren Wanzke, Dr. Marta Tena-Solsona, Prof. Dr. Job Boekhoven
{"title":"Tuning the Kinetic Trapping in Chemically Fueled Self-Assembly","authors":"Brigitte A. K. Kriebisch,&nbsp;Christine M. E. Kriebisch,&nbsp;Alexander M. Bergmann,&nbsp;Dr. Caren Wanzke,&nbsp;Dr. Marta Tena-Solsona,&nbsp;Prof. Dr. Job Boekhoven","doi":"10.1002/syst.202200046","DOIUrl":"https://doi.org/10.1002/syst.202200046","url":null,"abstract":"<p>The front cover artwork is provided by BoekhovenLab at TU Munich. The image shows an energy landscape of kinetically trapped chemically fueled supramolecular fibers, which reminds of a mountain landscape. Read the full text of the Research Article at 10.1002/syst.202200035.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50150953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Tuning the Kinetic Trapping in Chemically Fueled Self-Assembly (ChemSystemsChem 1/2023) 封面:调整化学燃料自组装中的动力学陷阱(ChemSystemsChem 1/2023)
ChemSystemsChem Pub Date : 2022-12-15 DOI: 10.1002/syst.202200047
Brigitte A. K. Kriebisch, Christine M. E. Kriebisch, Alexander M. Bergmann, Dr. Caren Wanzke, Dr. Marta Tena-Solsona, Prof. Dr. Job Boekhoven
{"title":"Front Cover: Tuning the Kinetic Trapping in Chemically Fueled Self-Assembly (ChemSystemsChem 1/2023)","authors":"Brigitte A. K. Kriebisch,&nbsp;Christine M. E. Kriebisch,&nbsp;Alexander M. Bergmann,&nbsp;Dr. Caren Wanzke,&nbsp;Dr. Marta Tena-Solsona,&nbsp;Prof. Dr. Job Boekhoven","doi":"10.1002/syst.202200047","DOIUrl":"https://doi.org/10.1002/syst.202200047","url":null,"abstract":"<p><b>The Front Cover</b> represents an energy landscape of kinetically trapped chemical-fueled fibers, which reminds of a mountain landscape. Our work unravels how tuning the kinetic trapping in chemical-fueled self-assemblies can recover dynamic instabilities, such as microtubule-like growth and shrinkage. This opens the door to the creation of new adaptive nanotechnologies. More information can be found in the Research Article by Job Boekhoven and co-workers.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50150952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Primer on Building Life-Like Systems 构建类生命系统的入门手册
ChemSystemsChem Pub Date : 2022-12-08 DOI: 10.1002/syst.202200033
Dr. Mahesh A. Vibhute, Prof. Dr. Hannes Mutschler
{"title":"A Primer on Building Life-Like Systems","authors":"Dr. Mahesh A. Vibhute,&nbsp;Prof. Dr. Hannes Mutschler","doi":"10.1002/syst.202200033","DOIUrl":"10.1002/syst.202200033","url":null,"abstract":"<p>The quest to understand life and recreate it in vitro has been undertaken through many different routes. These different approaches for experimental investigation of life aim to piece together the puzzle either by tracing life's origin or by synthesizing life-like systems from non-living components. Unlike efforts to define life, these experimental inquiries aim to recapture specific features of living cells, such as reproduction, self-organization or metabolic functions that operate far from thermodynamic equilibrium. As such, these efforts have generated significant insights that shed light on crucial aspects of biological functions. For observers outside these specific research fields, it sometimes remains puzzling what properties an artificial system would need to have in order to be recognized as most similar to life. In this Perspective, we discuss properties whose realization would, in our view, allow the best possible experimental emulation of a minimal form of biological life.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49045803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Functional Rhythmic Chemical Systems Governed by pH-Driven Kinetic Feedback pH驱动动力学反馈控制的功能节律化学系统
ChemSystemsChem Pub Date : 2022-11-22 DOI: 10.1002/syst.202200032
Dr. Brigitta Dúzs, Dr. István Lagzi, Dr. István Szalai
{"title":"Functional Rhythmic Chemical Systems Governed by pH-Driven Kinetic Feedback","authors":"Dr. Brigitta Dúzs,&nbsp;Dr. István Lagzi,&nbsp;Dr. István Szalai","doi":"10.1002/syst.202200032","DOIUrl":"10.1002/syst.202200032","url":null,"abstract":"<p>Hydrogen ion autocatalytic reactions, especially in combination with an appropriate negative feedback process, show a wide range of dynamical phenomena, like clock behavior, bistability, oscillations, waves, and stationary patterns. The temporal or spatial variation of pH caused by these reactions is often significant enough to control the actual state (geometry, conformation, reactivity) or drive the mechanical motion of coupled pH-sensitive physico-chemical systems. These autonomous operating systems provide nonlinear chemistry's most reliable applications, where the hydrogen ion autocatalytic reactions act as engines. This review briefly summarizes the nonlinear dynamics of these reactions and the different approaches developed to properly couple the pH-sensitive units (e. g., pH-sensitive equilibria, gels, molecular machines, colloids). We also emphasize the feedback of the coupled processes on the dynamics of the hydrogen ion autocatalytic reactions since the way of coupling is a critical operational issue.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42345101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Generation of Bilayer Asymmetry and Membrane Curvature by the Sugar-Cleaving Enzyme Invertase 糖裂解酶转化酶产生双层不对称性和膜曲率
ChemSystemsChem Pub Date : 2022-11-07 DOI: 10.1002/syst.202200027
Abhimanyu Nowbagh, Akshi Deshwal, Mayur Kadu, Dr. Abhishek Chaudhuri, Dr. Subhabrata Maiti, Prof. Dr. Reinhard Lipowsky, Dr. Tripta Bhatia
{"title":"Generation of Bilayer Asymmetry and Membrane Curvature by the Sugar-Cleaving Enzyme Invertase","authors":"Abhimanyu Nowbagh,&nbsp;Akshi Deshwal,&nbsp;Mayur Kadu,&nbsp;Dr. Abhishek Chaudhuri,&nbsp;Dr. Subhabrata Maiti,&nbsp;Prof. Dr. Reinhard Lipowsky,&nbsp;Dr. Tripta Bhatia","doi":"10.1002/syst.202200027","DOIUrl":"10.1002/syst.202200027","url":null,"abstract":"<p>The catalytic action of invertase generates bilayer asymmetry that stabilises membrane curvature. The driving mechanism for the generation of membrane curvature by invertase is investigated using giant unilamellar vesicles (GUVs). The invertase cleaves the sucrose in the exterior compartment, thereby creating a sugar asymmetry across the bilayer membrane that is measured for GUV membranes consisting of the lipid Dioleoylphosphatidylcholine (DOPC). Finally, the advantage of this method to control membrane curvature and to stabilize multi-sphere morphologies is demonstrated. The GUV system in the presence of invertase is beneficial as a tool to generate multiple on-demand compartments with more extended stability after the enzymatic activity has established the asymmetry.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41325048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信