Cell insight最新文献

筛选
英文 中文
Unveiling racial disparities in prostate cancer using an integrative genomic and transcriptomic analysis
Cell insight Pub Date : 2025-02-17 DOI: 10.1016/j.cellin.2025.100238
Abdalla Elbialy , Akshay Sood , Shang-Jui Wang , Peng Wang , Ahmed Fadiel , Anil V. Parwani , Steven Huang , Gennady Shvets , Nagireddy Putluri , Jenny Li , Xuefeng Liu
{"title":"Unveiling racial disparities in prostate cancer using an integrative genomic and transcriptomic analysis","authors":"Abdalla Elbialy ,&nbsp;Akshay Sood ,&nbsp;Shang-Jui Wang ,&nbsp;Peng Wang ,&nbsp;Ahmed Fadiel ,&nbsp;Anil V. Parwani ,&nbsp;Steven Huang ,&nbsp;Gennady Shvets ,&nbsp;Nagireddy Putluri ,&nbsp;Jenny Li ,&nbsp;Xuefeng Liu","doi":"10.1016/j.cellin.2025.100238","DOIUrl":"10.1016/j.cellin.2025.100238","url":null,"abstract":"<div><div>Prostate cancer exhibits significant racial disparities, with African American (AA) individuals showing ∼64% higher incidence and 2.3 times greater mortality rates compared to their Caucasian (CA) counterparts. Understanding the complex interplay of genetic, environmental, lifestyle, socioeconomic, and healthcare access factors is crucial for developing effective interventions to reduce this disproportionate burden.</div><div>This study aims to uncover the genetic and transcriptomic differences driving these disparities through a comprehensive analysis using RNA sequencing (RNA-seq) and exome sequencing of prostate cancer tissues from both Black and White patients.</div><div>Our transcriptomics analysis revealed enhanced activity in pathways linked to immune response and cellular interactions in AA prostate cancer samples, with notable regulation by histone-associated transcription factors (HIST1H1A, HIST1H1D, and HIST1H1B) suggests potential involvement of histone modification mechanisms. Additionally, pseudogenes and long non-coding RNAs (lncRNAs) among the regulated genes indicate non-coding elements' role in these disparities.</div><div>Exome sequencing identified unique variants in AA patient samples within key genes, including TP73 (tumor suppression), XYLB (metabolism), ALDH4A1 (oxidative stress), PTPRB (cellular signaling), and HLA-DRB5 (immune response). These genetic variations likely contribute to disease progression and therapy response disparities.</div><div>This study highlights the importance of considering genetic and epigenetic variations in developing tailored therapeutic approaches to improve treatment efficacy and reduce mortality rates across diverse populations.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 2","pages":"Article 100238"},"PeriodicalIF":0.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover
Cell insight Pub Date : 2025-02-01 DOI: 10.1016/S2772-8927(25)00004-5
{"title":"Cover","authors":"","doi":"10.1016/S2772-8927(25)00004-5","DOIUrl":"10.1016/S2772-8927(25)00004-5","url":null,"abstract":"","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 1","pages":"Article 100230"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143175982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cell autonomous and non-autonomous roles of itaconate in immune response
Cell insight Pub Date : 2025-02-01 DOI: 10.1016/j.cellin.2024.100224
Chao Chen , Xinjian Li
{"title":"The cell autonomous and non-autonomous roles of itaconate in immune response","authors":"Chao Chen ,&nbsp;Xinjian Li","doi":"10.1016/j.cellin.2024.100224","DOIUrl":"10.1016/j.cellin.2024.100224","url":null,"abstract":"<div><div>Itaconate which is discovered as a mammalian metabolite possessing antimicrobial and immunoregulatory activity has attracted much attention in the field of immunometabolism. Itaconate is synthesized by myeloid cells under conditions of pathogen infection and sterile inflammation. In addition to regulating immune response of myeloid cells, itaconate secreted from myeloid cells can also be taken up by non-myeloid cells to exert immunoregulatory effects in a cell non-autonomous manner. In this review, we recap the discovery of itaconate as a distinct immunologic regulator and effector, describe the development of itaconate biosensor, and detail the recent findings that decipher the mechanism underlying intercellular transport of itaconate. Based on these knowledges, we propose itaconate is a messenger transmitting immunologic signals from myeloid cells to other types of cells during host inflammation and immune defense.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 1","pages":"Article 100224"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in photoreceptor replacement therapy for retinal degenerative diseases
Cell insight Pub Date : 2025-02-01 DOI: 10.1016/j.cellin.2024.100223
Yuxin Du , Yin Shen
{"title":"Progress in photoreceptor replacement therapy for retinal degenerative diseases","authors":"Yuxin Du ,&nbsp;Yin Shen","doi":"10.1016/j.cellin.2024.100223","DOIUrl":"10.1016/j.cellin.2024.100223","url":null,"abstract":"<div><div>Retinal degenerative diseases encompass a diverse range of eye conditions that result in blindness, many due to photoreceptor dysfunction and loss. Regrettably, current clinical treatments are frequently not overly effective. However, photoreceptor transplantation shows promise as a potential therapy for late-stage retinal degenerative diseases. This article will review the various donor cell sources for this transplantation, as well as the mechanisms and factors that impact donor cell integration and material transfer, donor cell maturation, and other auxiliary methods that can be combined with photoreceptor transplantation to treat these degenerative retinal diseases.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 1","pages":"Article 100223"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-Guided design of Cas12a variants improves detection of nucleic acids
Cell insight Pub Date : 2025-01-20 DOI: 10.1016/j.cellin.2025.100228
Xiaohan Tong , Tianle Li , Kun Zhang , Dongming Zhao , Ying Zhang , Hao Yin
{"title":"Structure-Guided design of Cas12a variants improves detection of nucleic acids","authors":"Xiaohan Tong ,&nbsp;Tianle Li ,&nbsp;Kun Zhang ,&nbsp;Dongming Zhao ,&nbsp;Ying Zhang ,&nbsp;Hao Yin","doi":"10.1016/j.cellin.2025.100228","DOIUrl":"10.1016/j.cellin.2025.100228","url":null,"abstract":"<div><div>CRISPR-Cas12a holds promising potential for pathogen detection. However, its performance is not optimal when combined with isothermal amplification. Hence, we engineered a mutant of LbCas12a (K595A) with reduced <em>cis</em>-cleavage activity, to minimize interference with isothermal amplification. Compared to wild-type Cas12a, the K595A mutant exhibited a 2–3 times faster reaction speed and a 1,000–10,000 times increase in sensitivity in a one-pot reaction. We applied this mutant for detection of African Swine Fever Virus (ASFV). This K595A mutant successfully detected all 30 ASFV samples within 20 minutes. Our study suggests a universal approach to improve the performance of Cas12a for pathogen detection.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 2","pages":"Article 100228"},"PeriodicalIF":0.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The promising role of nanopore sequencing in cancer diagnostics and treatment
Cell insight Pub Date : 2025-01-18 DOI: 10.1016/j.cellin.2025.100229
Xinming Su , Qingyuan Lin , Bin Liu , Chuntao Zhou , Liuyi Lu , Zihao Lin , Jiahua Si , Yuemin Ding , Shiwei Duan
{"title":"The promising role of nanopore sequencing in cancer diagnostics and treatment","authors":"Xinming Su ,&nbsp;Qingyuan Lin ,&nbsp;Bin Liu ,&nbsp;Chuntao Zhou ,&nbsp;Liuyi Lu ,&nbsp;Zihao Lin ,&nbsp;Jiahua Si ,&nbsp;Yuemin Ding ,&nbsp;Shiwei Duan","doi":"10.1016/j.cellin.2025.100229","DOIUrl":"10.1016/j.cellin.2025.100229","url":null,"abstract":"<div><div>Cancer arises from genetic alterations that impact both the genome and transcriptome. The utilization of nanopore sequencing offers a powerful means of detecting these alterations due to its unique capacity for long single-molecule sequencing. In the context of DNA analysis, nanopore sequencing excels in identifying structural variations (SVs), copy number variations (CNVs), gene fusions within SVs, and mutations in specific genes, including those involving DNA modifications and DNA adducts. In the field of RNA research, nanopore sequencing proves invaluable in discerning differentially expressed transcripts, uncovering novel elements linked to transcriptional regulation, and identifying alternative splicing events and RNA modifications at the single-molecule level. Furthermore, nanopore sequencing extends its reach to detecting microorganisms, encompassing bacteria and viruses, that are intricately associated with tumorigenesis and the development of cancer. Consequently, the application prospects of nanopore sequencing in tumor diagnosis and personalized treatment are expansive, encompassing tasks such as tumor identification and classification, the tailoring of treatment strategies, and the screening of prospective patients. In essence, this technology stands poised to unearth novel mechanisms underlying tumorigenesis while providing dependable support for the diagnosis and treatment of cancer.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 2","pages":"Article 100229"},"PeriodicalIF":0.0,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143265220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to previous published articles
Cell insight Pub Date : 2025-01-11 DOI: 10.1016/j.cellin.2024.100225
{"title":"Corrigendum to previous published articles","authors":"","doi":"10.1016/j.cellin.2024.100225","DOIUrl":"10.1016/j.cellin.2024.100225","url":null,"abstract":"","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 2","pages":"Article 100225"},"PeriodicalIF":0.0,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of colonic microbiota amino acid metabolism in gut health regulation
Cell insight Pub Date : 2025-01-10 DOI: 10.1016/j.cellin.2025.100227
Youli Chen, Jing-Yuan Fang
{"title":"The role of colonic microbiota amino acid metabolism in gut health regulation","authors":"Youli Chen,&nbsp;Jing-Yuan Fang","doi":"10.1016/j.cellin.2025.100227","DOIUrl":"10.1016/j.cellin.2025.100227","url":null,"abstract":"<div><div>The human gut microbiota plays a critical role in maintaining host homeostasis through metabolic activities. Among these, amino acid (AA) metabolism by the microbiota in the large intestine is highly heterogeneous and relevant to host health. Despite increasing interest, microbial AA metabolism remains relatively unexplored. This review highlights recent advances in colonic microbial AA metabolism, including auxotrophies, AA synthesis, and dissimilatory AA metabolites, and their implications in gut health, focusing on major gastrointestinal diseases including colorectal cancer, inflammatory bowel disease, and irritable bowel syndrome.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 2","pages":"Article 100227"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision epitope editing: A path to advanced immunotherapies
Cell insight Pub Date : 2024-12-24 DOI: 10.1016/j.cellin.2024.100226
Rui-Jin Ji , Mu-Yao Wang , Ying Zhang
{"title":"Precision epitope editing: A path to advanced immunotherapies","authors":"Rui-Jin Ji ,&nbsp;Mu-Yao Wang ,&nbsp;Ying Zhang","doi":"10.1016/j.cellin.2024.100226","DOIUrl":"10.1016/j.cellin.2024.100226","url":null,"abstract":"<div><div>The ability to recognize antigen epitope is crucial for generating an effective immune response. By engineering these epitopes, researchers can reduce on-target/off-tumor toxicity associated with targeted immunotherapy. Recent studies indicate that employing various gene editing tools to modify the epitopes of healthy hematopoietic stem and progenitor cells (HSPCs) can protect these cells from toxicity during tumor eradication, all while preserving their differentiation and function. This advancement greatly enhances the safety and efficacy of tumor immunotherapy.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 2","pages":"Article 100226"},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflammatory signatures of microglia in hypercortisolemia-related depression
Cell insight Pub Date : 2024-11-13 DOI: 10.1016/j.cellin.2024.100222
Yanxiang Zhao , Yingying Huang , Zhangyuzi Deng, Ying Cao, Jing Yang
{"title":"Inflammatory signatures of microglia in hypercortisolemia-related depression","authors":"Yanxiang Zhao ,&nbsp;Yingying Huang ,&nbsp;Zhangyuzi Deng,&nbsp;Ying Cao,&nbsp;Jing Yang","doi":"10.1016/j.cellin.2024.100222","DOIUrl":"10.1016/j.cellin.2024.100222","url":null,"abstract":"","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 2","pages":"Article 100222"},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信