Cell insight最新文献

筛选
英文 中文
Corrigendum to previous published articles
Cell insight Pub Date : 2025-01-11 DOI: 10.1016/j.cellin.2024.100225
{"title":"Corrigendum to previous published articles","authors":"","doi":"10.1016/j.cellin.2024.100225","DOIUrl":"10.1016/j.cellin.2024.100225","url":null,"abstract":"","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 2","pages":"Article 100225"},"PeriodicalIF":0.0,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of colonic microbiota amino acid metabolism in gut health regulation
Cell insight Pub Date : 2025-01-10 DOI: 10.1016/j.cellin.2025.100227
Youli Chen, Jing-Yuan Fang
{"title":"The role of colonic microbiota amino acid metabolism in gut health regulation","authors":"Youli Chen,&nbsp;Jing-Yuan Fang","doi":"10.1016/j.cellin.2025.100227","DOIUrl":"10.1016/j.cellin.2025.100227","url":null,"abstract":"<div><div>The human gut microbiota plays a critical role in maintaining host homeostasis through metabolic activities. Among these, amino acid (AA) metabolism by the microbiota in the large intestine is highly heterogeneous and relevant to host health. Despite increasing interest, microbial AA metabolism remains relatively unexplored. This review highlights recent advances in colonic microbial AA metabolism, including auxotrophies, AA synthesis, and dissimilatory AA metabolites, and their implications in gut health, focusing on major gastrointestinal diseases including colorectal cancer, inflammatory bowel disease, and irritable bowel syndrome.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 2","pages":"Article 100227"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision epitope editing: A path to advanced immunotherapies
Cell insight Pub Date : 2024-12-24 DOI: 10.1016/j.cellin.2024.100226
Rui-Jin Ji , Mu-Yao Wang , Ying Zhang
{"title":"Precision epitope editing: A path to advanced immunotherapies","authors":"Rui-Jin Ji ,&nbsp;Mu-Yao Wang ,&nbsp;Ying Zhang","doi":"10.1016/j.cellin.2024.100226","DOIUrl":"10.1016/j.cellin.2024.100226","url":null,"abstract":"<div><div>The ability to recognize antigen epitope is crucial for generating an effective immune response. By engineering these epitopes, researchers can reduce on-target/off-tumor toxicity associated with targeted immunotherapy. Recent studies indicate that employing various gene editing tools to modify the epitopes of healthy hematopoietic stem and progenitor cells (HSPCs) can protect these cells from toxicity during tumor eradication, all while preserving their differentiation and function. This advancement greatly enhances the safety and efficacy of tumor immunotherapy.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 2","pages":"Article 100226"},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflammatory signatures of microglia in hypercortisolemia-related depression
Cell insight Pub Date : 2024-11-13 DOI: 10.1016/j.cellin.2024.100222
Yanxiang Zhao , Yingying Huang , Zhangyuzi Deng, Ying Cao, Jing Yang
{"title":"Inflammatory signatures of microglia in hypercortisolemia-related depression","authors":"Yanxiang Zhao ,&nbsp;Yingying Huang ,&nbsp;Zhangyuzi Deng,&nbsp;Ying Cao,&nbsp;Jing Yang","doi":"10.1016/j.cellin.2024.100222","DOIUrl":"10.1016/j.cellin.2024.100222","url":null,"abstract":"","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 2","pages":"Article 100222"},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover 封面
Cell insight Pub Date : 2024-11-08 DOI: 10.1016/S2772-8927(24)00070-1
{"title":"Cover","authors":"","doi":"10.1016/S2772-8927(24)00070-1","DOIUrl":"10.1016/S2772-8927(24)00070-1","url":null,"abstract":"","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"3 6","pages":"Article 100215"},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase-separated chromatin compartments: Orchestrating gene expression through condensation 相分离的染色质区室:通过凝集协调基因表达
Cell insight Pub Date : 2024-10-12 DOI: 10.1016/j.cellin.2024.100213
Xin Li , Chengzhi Liu , Zhichao Lei , Huan Chen , Liang Wang
{"title":"Phase-separated chromatin compartments: Orchestrating gene expression through condensation","authors":"Xin Li ,&nbsp;Chengzhi Liu ,&nbsp;Zhichao Lei ,&nbsp;Huan Chen ,&nbsp;Liang Wang","doi":"10.1016/j.cellin.2024.100213","DOIUrl":"10.1016/j.cellin.2024.100213","url":null,"abstract":"<div><div>Eukaryotic genomes are organized into distinct chromatin compartments, some of which exhibit properties of biomolecular condensates. These condensates primarily form due to chromatin-associated proteins/complexes (CAPs). CAPs play a crucial role in gene expression, functioning as either transcriptional repressors or activators. Phase separation, a well-established biophysical phenomenon, is a key driver of chromatin condensate formation by CAPs. Notably, multivalent CAPs with the ability to engage in diverse interactions promote chromatin compaction, leading to the formation of transcriptionally repressed compartments. Conversely, interactions between intrinsically disordered region (IDR)-containing transcriptional regulators, mediated by their multivalent IDRs, lead to the formation of protein-rich, transcriptionally active droplets on decondensed genomic regions. Interestingly, both repressive heterochromatin and activating euchromatin condensates exhibit spontaneous phase separation and selectively enrich components with concordant transcriptional functions. This review delves into the mechanisms by which transcriptionally repressive CAPs orchestrate the formation of repressed chromatin domains. We further explore how a diverse array of transcription-related CAPs or core histone variants, via phase separation, influence gene expression by inducing erroneous transcription events, regulating expression levels, and facilitating the interconversion of transcriptionally repressed and active regions.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"3 6","pages":"Article 100213"},"PeriodicalIF":0.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcripts derived from the neocortical enhancer of Ctnnb1 promote the enhancer-promoter interaction and maintain Ctnnb1 transcription 源自 Ctnnb1 新皮质增强子的转录本促进增强子与启动子之间的相互作用并维持 Ctnnb1 的转录
Cell insight Pub Date : 2024-10-11 DOI: 10.1016/j.cellin.2024.100212
Chen Zhao , Liang Wang , Junbao Wang, Kuan Tian, Xiaojiao Hua, Fangyu Wang, Yan Zhou
{"title":"Transcripts derived from the neocortical enhancer of Ctnnb1 promote the enhancer-promoter interaction and maintain Ctnnb1 transcription","authors":"Chen Zhao ,&nbsp;Liang Wang ,&nbsp;Junbao Wang,&nbsp;Kuan Tian,&nbsp;Xiaojiao Hua,&nbsp;Fangyu Wang,&nbsp;Yan Zhou","doi":"10.1016/j.cellin.2024.100212","DOIUrl":"10.1016/j.cellin.2024.100212","url":null,"abstract":"","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 1","pages":"Article 100212"},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
APC orchestrates microtubule dynamics by acting as a positive regulator of KIF2A and a negative regulator of CLASPs APC 通过充当 KIF2A 的正调控因子和 CLASPs 的负调控因子来协调微管动力学
Cell insight Pub Date : 2024-10-11 DOI: 10.1016/j.cellin.2024.100210
Yong Wang , Xinping Liu , Zheng Liu , Shasha Hua , Kai Jiang
{"title":"APC orchestrates microtubule dynamics by acting as a positive regulator of KIF2A and a negative regulator of CLASPs","authors":"Yong Wang ,&nbsp;Xinping Liu ,&nbsp;Zheng Liu ,&nbsp;Shasha Hua ,&nbsp;Kai Jiang","doi":"10.1016/j.cellin.2024.100210","DOIUrl":"10.1016/j.cellin.2024.100210","url":null,"abstract":"<div><div>Tumor suppressor protein Adenomatous polyposis coli protein (APC) is an EB-binding and microtubule (MT) plus end-tracking protein; however, how exactly APC regulates MT dynamics remains elusive. Here, we show that in LLC-PK1 cells, APC and KIF2A, an MT depolymerase, form a complex clustering at the cell edge and destabilize MTs at the MT plus ends. Further biochemical characterization and mutational analysis reveal key residues for the APC-KIF2A interaction. In addition, APC counteracts the major MT-stabilizer CLASPs at MT plus ends and promotes directional cell migration via modulating cell adhesion force. Reconstitution experiments demonstrate that APC potentiates KIF2A-induced MT catastrophes and antagonizes the stabilizing effect of CLASP2 <em>in vitro</em>. In summary, APC functions as a positive regulator of MT-destabilizer and a negative regulator of MT-stabilizer to orchestrate MT dynamics.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 1","pages":"Article 100210"},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Just a SNP away: The future of in vivo massively parallel reporter assay 只差一个 SNP体内大规模并行报告分析的未来
Cell insight Pub Date : 2024-10-10 DOI: 10.1016/j.cellin.2024.100214
Katherine N. Degner , Jessica L. Bell , Sean D. Jones , Hyejung Won
{"title":"Just a SNP away: The future of in vivo massively parallel reporter assay","authors":"Katherine N. Degner ,&nbsp;Jessica L. Bell ,&nbsp;Sean D. Jones ,&nbsp;Hyejung Won","doi":"10.1016/j.cellin.2024.100214","DOIUrl":"10.1016/j.cellin.2024.100214","url":null,"abstract":"<div><div>The human genome is largely noncoding, yet the field is still grasping to understand how noncoding variants impact transcription and contribute to disease etiology. The massively parallel reporter assay (MPRA) has been employed to characterize the function of noncoding variants at unprecedented scales, but its application has been largely limited by the <em>in vitro</em> context. The field will benefit from establishing a systemic platform to study noncoding variant function across multiple tissue types under physiologically relevant conditions. However, to date, MPRA has been applied to only a handful of <em>in vivo</em> conditions. Given the complexity of the central nervous system and its widespread interactions with all other organ systems, our understanding of neuropsychiatric disorder-associated noncoding variants would be greatly advanced by studying their functional impact in the intact brain. In this review, we discuss the importance, technical considerations, and future applications of implementing MPRA in the <em>in vivo</em> space with the focus on neuropsychiatric disorders.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 1","pages":"Article 100214"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of core fucosylation modification in immune system and diseases 核心岩藻糖基化修饰在免疫系统和疾病中的作用
Cell insight Pub Date : 2024-10-09 DOI: 10.1016/j.cellin.2024.100211
Qiu Pan , Xiao-Lian Zhang
{"title":"Roles of core fucosylation modification in immune system and diseases","authors":"Qiu Pan ,&nbsp;Xiao-Lian Zhang","doi":"10.1016/j.cellin.2024.100211","DOIUrl":"10.1016/j.cellin.2024.100211","url":null,"abstract":"<div><div>Core fucosylation, catalyzed by α1,6-fucosyltransferase (FUT8), is an important <em>N-</em>glycosylation modification process that attaches a fucose residue via an α1,6-linkage to the core <em>N</em>-acetylglucosamine of <em>N</em>-glycans in mammals. Research over the past three decades has revealed the critical role of FUT8-mediated core fucosylation modification in various physiological and pathological processes, including cell growth, adhesion, receptor activation, antibody-dependent cellular cytotoxicity (ADCC), tumor metastasis and infections. This review discusses the immune system function involving FUT8 and the mechanisms by which core fucosylation regulates immunity and contributes to disease. A deeper understanding of these mechanisms can provide insights into cellular biology and suggest new therapeutic approaches and targets for related diseases.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 1","pages":"Article 100211"},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信