Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)最新文献

筛选
英文 中文
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers 脑损伤:胶质瘤,多发性硬化症,中风和创伤性脑损伤:第八届国际研讨会,BrainLes 2022,与MICCAI 2022一起举行,新加坡,2022年9月18日,修订论文选集
{"title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers","authors":"","doi":"10.1007/978-3-031-33842-7","DOIUrl":"https://doi.org/10.1007/978-3-031-33842-7","url":null,"abstract":"","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"124 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87899491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Optimization of Deep Learning Based Brain Extraction in MRI for Low Resource Environments. 低资源环境下基于深度学习的MRI脑提取优化。
Siddhesh P Thakur, Sarthak Pati, Ravi Panchumarthy, Deepthi Karkada, Junwen Wu, Dmitry Kurtaev, Chiharu Sako, Prashant Shah, Spyridon Bakas
{"title":"Optimization of Deep Learning Based Brain Extraction in MRI for Low Resource Environments.","authors":"Siddhesh P Thakur,&nbsp;Sarthak Pati,&nbsp;Ravi Panchumarthy,&nbsp;Deepthi Karkada,&nbsp;Junwen Wu,&nbsp;Dmitry Kurtaev,&nbsp;Chiharu Sako,&nbsp;Prashant Shah,&nbsp;Spyridon Bakas","doi":"10.1007/978-3-031-08999-2_12","DOIUrl":"https://doi.org/10.1007/978-3-031-08999-2_12","url":null,"abstract":"<p><p>Brain extraction is an indispensable step in neuro-imaging with a direct impact on downstream analyses. Most such methods have been developed for non-pathologically affected brains, and hence tend to suffer in performance when applied on brains with pathologies, e.g., gliomas, multiple sclerosis, traumatic brain injuries. Deep Learning (DL) methodologies for healthcare have shown promising results, but their clinical translation has been limited, primarily due to these methods suffering from i) high computational cost, and ii) specific hardware requirements, e.g., DL acceleration cards. In this study, we explore the potential of mathematical optimizations, towards making DL methods amenable to application in low resource environments. We focus on both the qualitative and quantitative evaluation of such optimizations on an existing DL brain extraction method, designed for pathologically-affected brains and agnostic to the input modality. We conduct direct optimizations and quantization of the trained model (i.e., prior to inference on new data). Our results yield substantial gains, in terms of speedup, latency, through-put, and reduction in memory usage, while the segmentation performance of the initial and the optimized models remains stable, i.e., as quantified by both the Dice Similarity Coefficient and the Hausdorff Distance. These findings support post-training optimizations as a promising approach for enabling the execution of advanced DL methodologies on plain commercial-grade CPUs, and hence contributing to their translation in limited- and low- resource clinical environments.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"12962 ","pages":"151-167"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627678/pdf/nihms-1839074.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9469997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part I 脑损伤:胶质瘤,多发性硬化症,中风和创伤性脑损伤:第七届国际研讨会,BrainLes 2021,与MICCAI 2021一起举行,虚拟事件,2021年9月27日,修订论文选集,第一部分
{"title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part I","authors":"","doi":"10.1007/978-3-031-08999-2","DOIUrl":"https://doi.org/10.1007/978-3-031-08999-2","url":null,"abstract":"","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89232223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part II 脑损伤:胶质瘤,多发性硬化症,中风和创伤性脑损伤:第七届国际研讨会,BrainLes 2021,与MICCAI 2021一起举行,虚拟事件,2021年9月27日,修订的论文选集,第二部分
{"title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part II","authors":"","doi":"10.1007/978-3-031-09002-8","DOIUrl":"https://doi.org/10.1007/978-3-031-09002-8","url":null,"abstract":"","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91388541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation. BiTr-Unet:用于核磁共振成像脑肿瘤分割的 CNN-变压器组合网络。
Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop) Pub Date : 2021-09-01 Epub Date: 2022-07-15 DOI: 10.1007/978-3-031-09002-8_1
Qiran Jia, Hai Shu
{"title":"BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation.","authors":"Qiran Jia, Hai Shu","doi":"10.1007/978-3-031-09002-8_1","DOIUrl":"10.1007/978-3-031-09002-8_1","url":null,"abstract":"<p><p>Convolutional neural networks (CNNs) have achieved remarkable success in automatically segmenting organs or lesions on 3D medical images. Recently, vision transformer networks have exhibited exceptional performance in 2D image classification tasks. Compared with CNNs, transformer networks have an appealing advantage of extracting long-range features due to their self-attention algorithm. Therefore, we propose a CNN-Transformer combined model, called BiTr-Unet, with specific modifications for brain tumor segmentation on multi-modal MRI scans. Our BiTr-Unet achieves good performance on the BraTS2021 validation dataset with median Dice score 0.9335, 0.9304 and 0.8899, and median Hausdor_ distance 2.8284, 2.2361 and 1.4142 for the whole tumor, tumor core, and enhancing tumor, respectively. On the BraTS2021 testing dataset, the corresponding results are 0.9257, 0.9350 and 0.8874 for Dice score, and 3, 2.2361 and 1.4142 for Hausdorff distance. The code is publicly available at https://github.com/JustaTinyDot/BiTr-Unet.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"2021 ","pages":"3-14"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396958/pdf/nihms-1830524.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40426599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part I 脑损伤:胶质瘤,多发性硬化症,中风和创伤性脑损伤:第六届国际研讨会,BrainLes 2020,与MICCAI 2020一起举行,秘鲁利马,2020年10月4日,修订论文选集,第一部分
{"title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part I","authors":"","doi":"10.1007/978-3-030-72084-1","DOIUrl":"https://doi.org/10.1007/978-3-030-72084-1","url":null,"abstract":"","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77235453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology. 用于脑磁共振成像注册与肿瘤病理学的对称受限不规则结构涂色技术
Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop) Pub Date : 2021-01-01 Epub Date: 2021-03-27 DOI: 10.1007/978-3-030-72084-1_8
Xiaofeng Liu, Fangxu Xing, Chao Yang, C-C Jay Kuo, Georges El Fakhri, Jonghye Woo
{"title":"Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology.","authors":"Xiaofeng Liu, Fangxu Xing, Chao Yang, C-C Jay Kuo, Georges El Fakhri, Jonghye Woo","doi":"10.1007/978-3-030-72084-1_8","DOIUrl":"10.1007/978-3-030-72084-1_8","url":null,"abstract":"<p><p>Deformable registration of magnetic resonance images between patients with brain tumors and healthy subjects has been an important tool to specify tumor geometry through location alignment and facilitate pathological analysis. Since tumor region does not match with any ordinary brain tissue, it has been difficult to deformably register a patient's brain to a normal one. Many patient images are associated with irregularly distributed lesions, resulting in further distortion of normal tissue structures and complicating registration's similarity measure. In this work, we follow a multi-step context-aware image inpainting framework to generate synthetic tissue intensities in the tumor region. The coarse image-to-image translation is applied to make a rough inference of the missing parts. Then, a feature-level patch-match refinement module is applied to refine the details by modeling the semantic relevance between patch-wise features. A symmetry constraint reflecting a large degree of anatomical symmetry in the brain is further proposed to achieve better structure understanding. Deformable registration is applied between inpainted patient images and normal brains, and the resulting deformation field is eventually used to deform original patient data for the final alignment. The method was applied to the Multimodal Brain Tumor Segmentation (BraTS) 2018 challenge database and compared against three existing inpainting methods. The proposed method yielded results with increased peak signal-to-noise ratio, structural similarity index, inception score, and reduced L1 error, leading to successful patient-to-normal brain image registration.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"12658 ","pages":"80-91"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130838/pdf/nihms-1636854.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38930752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression. 利用深度学习回归估计胶质母细胞瘤的生物物理生长参数。
Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop) Pub Date : 2021-01-01 Epub Date: 2021-03-27 DOI: 10.1007/978-3-030-72084-1_15
Sarthak Pati, Vaibhav Sharma, Heena Aslam, Siddhesh P Thakur, Hamed Akbari, Andreas Mang, Shashank Subramanian, George Biros, Christos Davatzikos, Spyridon Bakas
{"title":"Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression.","authors":"Sarthak Pati,&nbsp;Vaibhav Sharma,&nbsp;Heena Aslam,&nbsp;Siddhesh P Thakur,&nbsp;Hamed Akbari,&nbsp;Andreas Mang,&nbsp;Shashank Subramanian,&nbsp;George Biros,&nbsp;Christos Davatzikos,&nbsp;Spyridon Bakas","doi":"10.1007/978-3-030-72084-1_15","DOIUrl":"https://doi.org/10.1007/978-3-030-72084-1_15","url":null,"abstract":"<p><p>Glioblastoma ( <i><b>GBM</b></i> ) is arguably the most aggressive, infiltrative, and heterogeneous type of adult brain tumor. Biophysical modeling of GBM growth has contributed to more informed clinical decision-making. However, deploying a biophysical model to a clinical environment is challenging since underlying computations are quite expensive and can take several hours using existing technologies. Here we present a scheme to accelerate the computation. In particular, we present a deep learning ( <i><b>DL</b></i> )-based logistic regression model to estimate the GBM's biophysical growth in seconds. This growth is defined by three tumor-specific parameters: 1) a diffusion coefficient in white matter ( <i><b>Dw</b></i> ), which prescribes the rate of infiltration of tumor cells in white matter, 2) a mass-effect parameter ( <i><b>Mp</b></i> ), which defines the average tumor expansion, and 3) the estimated time ( <i><b>T</b></i> ) in number of days that the tumor has been growing. Preoperative structural multi-parametric MRI ( <i><b>mpMRI</b></i> ) scans from <i>n</i> = 135 subjects of the TCGA-GBM imaging collection are used to quantitatively evaluate our approach. We consider the mpMRI intensities within the region defined by the abnormal FLAIR signal envelope for training one DL model for each of the tumor-specific growth parameters. We train and validate the DL-based predictions against parameters derived from biophysical inversion models. The average Pearson correlation coefficients between our DL-based estimations and the biophysical parameters are 0.85 for <i>Dw</i>, 0.90 for <i>Mp</i>, and 0.94 for <i>T</i>, respectively. This study unlocks the power of tumor-specific parameters from biophysical tumor growth estimation. It paves the way towards their clinical translation and opens the door for leveraging advanced radiomic descriptors in future studies by means of a significantly faster parameter reconstruction compared to biophysical growth modeling approaches.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"12658 ","pages":"157-167"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428542/pdf/nihms-1733083.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39410324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II 脑损伤:胶质瘤,多发性硬化症,中风和创伤性脑损伤:第六届国际研讨会,BrainLes 2020,与MICCAI 2020一起举行,秘鲁利马,2020年10月4日,修订论文选集,第二部分
{"title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II","authors":"","doi":"10.1007/978-3-030-72087-2","DOIUrl":"https://doi.org/10.1007/978-3-030-72087-2","url":null,"abstract":"","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85842447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation. 基于变分自编码器和注意门的两阶段级联模型在MRI脑肿瘤分割中的应用。
Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop) Pub Date : 2020-10-01 Epub Date: 2021-03-27 DOI: 10.1007/978-3-030-72084-1_39
Chenggang Lyu, Hai Shu
{"title":"A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation.","authors":"Chenggang Lyu,&nbsp;Hai Shu","doi":"10.1007/978-3-030-72084-1_39","DOIUrl":"https://doi.org/10.1007/978-3-030-72084-1_39","url":null,"abstract":"<p><p>Automatic MRI brain tumor segmentation is of vital importance for the disease diagnosis, monitoring, and treatment planning. In this paper, we propose a two-stage encoder-decoder based model for brain tumor subregional segmentation. Variational autoencoder regularization is utilized in both stages to prevent the overfitting issue. The second-stage network adopts attention gates and is trained additionally using an expanded dataset formed by the first-stage outputs. On the BraTS 2020 validation dataset, the proposed method achieves the mean Dice score of 0.9041, 0.8350, and 0.7958, and Hausdorff distance (95%) of 4.953 , 6.299, 23.608 for the whole tumor, tumor core, and enhancing tumor, respectively. The corresponding results on the BraTS 2020 testing dataset are 0.8729, 0.8357, and 0.8205 for Dice score, and 11.4288, 19.9690, and 15.6711 for Hausdorff distance. The code is publicly available at https://github.com/shu-hai/two-stage-VAE-Attention-gate-BraTS2020.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"2020 ","pages":"435-447"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419250/pdf/nihms-1830502.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33445501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信