BiTr-Unet:用于核磁共振成像脑肿瘤分割的 CNN-变压器组合网络。

Qiran Jia, Hai Shu
{"title":"BiTr-Unet:用于核磁共振成像脑肿瘤分割的 CNN-变压器组合网络。","authors":"Qiran Jia, Hai Shu","doi":"10.1007/978-3-031-09002-8_1","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional neural networks (CNNs) have achieved remarkable success in automatically segmenting organs or lesions on 3D medical images. Recently, vision transformer networks have exhibited exceptional performance in 2D image classification tasks. Compared with CNNs, transformer networks have an appealing advantage of extracting long-range features due to their self-attention algorithm. Therefore, we propose a CNN-Transformer combined model, called BiTr-Unet, with specific modifications for brain tumor segmentation on multi-modal MRI scans. Our BiTr-Unet achieves good performance on the BraTS2021 validation dataset with median Dice score 0.9335, 0.9304 and 0.8899, and median Hausdor_ distance 2.8284, 2.2361 and 1.4142 for the whole tumor, tumor core, and enhancing tumor, respectively. On the BraTS2021 testing dataset, the corresponding results are 0.9257, 0.9350 and 0.8874 for Dice score, and 3, 2.2361 and 1.4142 for Hausdorff distance. The code is publicly available at https://github.com/JustaTinyDot/BiTr-Unet.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"2021 ","pages":"3-14"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396958/pdf/nihms-1830524.pdf","citationCount":"0","resultStr":"{\"title\":\"BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation.\",\"authors\":\"Qiran Jia, Hai Shu\",\"doi\":\"10.1007/978-3-031-09002-8_1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Convolutional neural networks (CNNs) have achieved remarkable success in automatically segmenting organs or lesions on 3D medical images. Recently, vision transformer networks have exhibited exceptional performance in 2D image classification tasks. Compared with CNNs, transformer networks have an appealing advantage of extracting long-range features due to their self-attention algorithm. Therefore, we propose a CNN-Transformer combined model, called BiTr-Unet, with specific modifications for brain tumor segmentation on multi-modal MRI scans. Our BiTr-Unet achieves good performance on the BraTS2021 validation dataset with median Dice score 0.9335, 0.9304 and 0.8899, and median Hausdor_ distance 2.8284, 2.2361 and 1.4142 for the whole tumor, tumor core, and enhancing tumor, respectively. On the BraTS2021 testing dataset, the corresponding results are 0.9257, 0.9350 and 0.8874 for Dice score, and 3, 2.2361 and 1.4142 for Hausdorff distance. The code is publicly available at https://github.com/JustaTinyDot/BiTr-Unet.</p>\",\"PeriodicalId\":72455,\"journal\":{\"name\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"volume\":\"2021 \",\"pages\":\"3-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396958/pdf/nihms-1830524.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-09002-8_1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-09002-8_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)在自动分割三维医学图像上的器官或病变方面取得了巨大成功。最近,视觉变换器网络在二维图像分类任务中表现出了卓越的性能。与 CNN 相比,变换器网络因其自我注意算法而在提取长距离特征方面具有吸引人的优势。因此,我们提出了一个 CNN-变换器组合模型,称为 BiTr-Unet,并针对多模态 MRI 扫描的脑肿瘤分割进行了特定的修改。我们的 BiTr-Unet 在 BraTS2021 验证数据集上取得了良好的性能,对整个肿瘤、肿瘤核心和增强肿瘤的中位 Dice 分数分别为 0.9335、0.9304 和 0.8899,中位 Hausdor_ 距离分别为 2.8284、2.2361 和 1.4142。在 BraTS2021 测试数据集上,Dice 分数的相应结果分别为 0.9257、0.9350 和 0.8874,Hausdorff 距离的相应结果分别为 3、2.2361 和 1.4142。代码可在 https://github.com/JustaTinyDot/BiTr-Unet 上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation.

BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation.

BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation.

Convolutional neural networks (CNNs) have achieved remarkable success in automatically segmenting organs or lesions on 3D medical images. Recently, vision transformer networks have exhibited exceptional performance in 2D image classification tasks. Compared with CNNs, transformer networks have an appealing advantage of extracting long-range features due to their self-attention algorithm. Therefore, we propose a CNN-Transformer combined model, called BiTr-Unet, with specific modifications for brain tumor segmentation on multi-modal MRI scans. Our BiTr-Unet achieves good performance on the BraTS2021 validation dataset with median Dice score 0.9335, 0.9304 and 0.8899, and median Hausdor_ distance 2.8284, 2.2361 and 1.4142 for the whole tumor, tumor core, and enhancing tumor, respectively. On the BraTS2021 testing dataset, the corresponding results are 0.9257, 0.9350 and 0.8874 for Dice score, and 3, 2.2361 and 1.4142 for Hausdorff distance. The code is publicly available at https://github.com/JustaTinyDot/BiTr-Unet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信