Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression.

Sarthak Pati, Vaibhav Sharma, Heena Aslam, Siddhesh P Thakur, Hamed Akbari, Andreas Mang, Shashank Subramanian, George Biros, Christos Davatzikos, Spyridon Bakas
{"title":"Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression.","authors":"Sarthak Pati,&nbsp;Vaibhav Sharma,&nbsp;Heena Aslam,&nbsp;Siddhesh P Thakur,&nbsp;Hamed Akbari,&nbsp;Andreas Mang,&nbsp;Shashank Subramanian,&nbsp;George Biros,&nbsp;Christos Davatzikos,&nbsp;Spyridon Bakas","doi":"10.1007/978-3-030-72084-1_15","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma ( <i><b>GBM</b></i> ) is arguably the most aggressive, infiltrative, and heterogeneous type of adult brain tumor. Biophysical modeling of GBM growth has contributed to more informed clinical decision-making. However, deploying a biophysical model to a clinical environment is challenging since underlying computations are quite expensive and can take several hours using existing technologies. Here we present a scheme to accelerate the computation. In particular, we present a deep learning ( <i><b>DL</b></i> )-based logistic regression model to estimate the GBM's biophysical growth in seconds. This growth is defined by three tumor-specific parameters: 1) a diffusion coefficient in white matter ( <i><b>Dw</b></i> ), which prescribes the rate of infiltration of tumor cells in white matter, 2) a mass-effect parameter ( <i><b>Mp</b></i> ), which defines the average tumor expansion, and 3) the estimated time ( <i><b>T</b></i> ) in number of days that the tumor has been growing. Preoperative structural multi-parametric MRI ( <i><b>mpMRI</b></i> ) scans from <i>n</i> = 135 subjects of the TCGA-GBM imaging collection are used to quantitatively evaluate our approach. We consider the mpMRI intensities within the region defined by the abnormal FLAIR signal envelope for training one DL model for each of the tumor-specific growth parameters. We train and validate the DL-based predictions against parameters derived from biophysical inversion models. The average Pearson correlation coefficients between our DL-based estimations and the biophysical parameters are 0.85 for <i>Dw</i>, 0.90 for <i>Mp</i>, and 0.94 for <i>T</i>, respectively. This study unlocks the power of tumor-specific parameters from biophysical tumor growth estimation. It paves the way towards their clinical translation and opens the door for leveraging advanced radiomic descriptors in future studies by means of a significantly faster parameter reconstruction compared to biophysical growth modeling approaches.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"12658 ","pages":"157-167"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428542/pdf/nihms-1733083.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-72084-1_15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Glioblastoma ( GBM ) is arguably the most aggressive, infiltrative, and heterogeneous type of adult brain tumor. Biophysical modeling of GBM growth has contributed to more informed clinical decision-making. However, deploying a biophysical model to a clinical environment is challenging since underlying computations are quite expensive and can take several hours using existing technologies. Here we present a scheme to accelerate the computation. In particular, we present a deep learning ( DL )-based logistic regression model to estimate the GBM's biophysical growth in seconds. This growth is defined by three tumor-specific parameters: 1) a diffusion coefficient in white matter ( Dw ), which prescribes the rate of infiltration of tumor cells in white matter, 2) a mass-effect parameter ( Mp ), which defines the average tumor expansion, and 3) the estimated time ( T ) in number of days that the tumor has been growing. Preoperative structural multi-parametric MRI ( mpMRI ) scans from n = 135 subjects of the TCGA-GBM imaging collection are used to quantitatively evaluate our approach. We consider the mpMRI intensities within the region defined by the abnormal FLAIR signal envelope for training one DL model for each of the tumor-specific growth parameters. We train and validate the DL-based predictions against parameters derived from biophysical inversion models. The average Pearson correlation coefficients between our DL-based estimations and the biophysical parameters are 0.85 for Dw, 0.90 for Mp, and 0.94 for T, respectively. This study unlocks the power of tumor-specific parameters from biophysical tumor growth estimation. It paves the way towards their clinical translation and opens the door for leveraging advanced radiomic descriptors in future studies by means of a significantly faster parameter reconstruction compared to biophysical growth modeling approaches.

利用深度学习回归估计胶质母细胞瘤的生物物理生长参数。
胶质母细胞瘤(GBM)被认为是最具侵袭性、浸润性和异质性的成人脑肿瘤。GBM生长的生物物理模型有助于更明智的临床决策。然而,将生物物理模型部署到临床环境是具有挑战性的,因为基础计算非常昂贵,并且使用现有技术可能需要几个小时。本文提出了一种加速计算的方案。特别是,我们提出了一个基于深度学习(DL)的逻辑回归模型来估计GBM在秒内的生物物理生长。这种生长由三个肿瘤特异性参数定义:1)白质中的扩散系数(Dw),它规定了肿瘤细胞在白质中的浸润率;2)质量效应参数(Mp),它定义了肿瘤的平均扩张;3)肿瘤生长的估计时间(T),以天数为单位。术前结构多参数MRI (mpMRI)扫描来自n = 135名TCGA-GBM成像收集的受试者,用于定量评估我们的方法。我们考虑在异常FLAIR信号包络所定义的区域内的mpMRI强度,为每个肿瘤特异性生长参数训练一个DL模型。我们训练并验证了基于生物物理反演模型参数的dl预测。我们基于dl的估计与生物物理参数之间的平均Pearson相关系数分别为Dw 0.85, Mp 0.90和T 0.94。这项研究揭示了生物物理肿瘤生长估计中肿瘤特异性参数的力量。它为临床转化铺平了道路,并为在未来的研究中利用先进的放射性描述符打开了大门,与生物物理生长建模方法相比,它的参数重建速度要快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信