用于脑磁共振成像注册与肿瘤病理学的对称受限不规则结构涂色技术

Xiaofeng Liu, Fangxu Xing, Chao Yang, C-C Jay Kuo, Georges El Fakhri, Jonghye Woo
{"title":"用于脑磁共振成像注册与肿瘤病理学的对称受限不规则结构涂色技术","authors":"Xiaofeng Liu, Fangxu Xing, Chao Yang, C-C Jay Kuo, Georges El Fakhri, Jonghye Woo","doi":"10.1007/978-3-030-72084-1_8","DOIUrl":null,"url":null,"abstract":"<p><p>Deformable registration of magnetic resonance images between patients with brain tumors and healthy subjects has been an important tool to specify tumor geometry through location alignment and facilitate pathological analysis. Since tumor region does not match with any ordinary brain tissue, it has been difficult to deformably register a patient's brain to a normal one. Many patient images are associated with irregularly distributed lesions, resulting in further distortion of normal tissue structures and complicating registration's similarity measure. In this work, we follow a multi-step context-aware image inpainting framework to generate synthetic tissue intensities in the tumor region. The coarse image-to-image translation is applied to make a rough inference of the missing parts. Then, a feature-level patch-match refinement module is applied to refine the details by modeling the semantic relevance between patch-wise features. A symmetry constraint reflecting a large degree of anatomical symmetry in the brain is further proposed to achieve better structure understanding. Deformable registration is applied between inpainted patient images and normal brains, and the resulting deformation field is eventually used to deform original patient data for the final alignment. The method was applied to the Multimodal Brain Tumor Segmentation (BraTS) 2018 challenge database and compared against three existing inpainting methods. The proposed method yielded results with increased peak signal-to-noise ratio, structural similarity index, inception score, and reduced L1 error, leading to successful patient-to-normal brain image registration.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"12658 ","pages":"80-91"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130838/pdf/nihms-1636854.pdf","citationCount":"0","resultStr":"{\"title\":\"Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology.\",\"authors\":\"Xiaofeng Liu, Fangxu Xing, Chao Yang, C-C Jay Kuo, Georges El Fakhri, Jonghye Woo\",\"doi\":\"10.1007/978-3-030-72084-1_8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deformable registration of magnetic resonance images between patients with brain tumors and healthy subjects has been an important tool to specify tumor geometry through location alignment and facilitate pathological analysis. Since tumor region does not match with any ordinary brain tissue, it has been difficult to deformably register a patient's brain to a normal one. Many patient images are associated with irregularly distributed lesions, resulting in further distortion of normal tissue structures and complicating registration's similarity measure. In this work, we follow a multi-step context-aware image inpainting framework to generate synthetic tissue intensities in the tumor region. The coarse image-to-image translation is applied to make a rough inference of the missing parts. Then, a feature-level patch-match refinement module is applied to refine the details by modeling the semantic relevance between patch-wise features. A symmetry constraint reflecting a large degree of anatomical symmetry in the brain is further proposed to achieve better structure understanding. Deformable registration is applied between inpainted patient images and normal brains, and the resulting deformation field is eventually used to deform original patient data for the final alignment. The method was applied to the Multimodal Brain Tumor Segmentation (BraTS) 2018 challenge database and compared against three existing inpainting methods. The proposed method yielded results with increased peak signal-to-noise ratio, structural similarity index, inception score, and reduced L1 error, leading to successful patient-to-normal brain image registration.</p>\",\"PeriodicalId\":72455,\"journal\":{\"name\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"volume\":\"12658 \",\"pages\":\"80-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130838/pdf/nihms-1636854.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-72084-1_8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-72084-1_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤患者与健康人之间的磁共振图像可变形配准一直是通过位置配准明确肿瘤几何形状和促进病理分析的重要工具。由于肿瘤区域与任何普通脑组织都不匹配,因此很难将患者的大脑与正常大脑进行变形配准。许多患者图像都伴有不规则分布的病灶,导致正常组织结构进一步失真,使配准的相似性测量更加复杂。在这项工作中,我们采用一个多步骤的情境感知图像内绘框架,生成肿瘤区域的合成组织强度。应用图像到图像的粗平移对缺失部分进行粗略推断。然后,应用特征级补丁匹配细化模块,通过对补丁特征之间的语义相关性建模来细化细节。为了实现更好的结构理解,还进一步提出了反映大脑解剖对称性的对称约束。在被涂抹的患者图像和正常大脑之间进行可变形配准,最终利用产生的变形场对原始患者数据进行变形配准。该方法被应用于多模态脑肿瘤分割(BraTS)2018 挑战赛数据库,并与现有的三种涂色方法进行了比较。所提出的方法提高了峰值信噪比、结构相似性指数和初始得分,并减少了 L1 误差,从而成功实现了患者与正常脑图像的配准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology.

Deformable registration of magnetic resonance images between patients with brain tumors and healthy subjects has been an important tool to specify tumor geometry through location alignment and facilitate pathological analysis. Since tumor region does not match with any ordinary brain tissue, it has been difficult to deformably register a patient's brain to a normal one. Many patient images are associated with irregularly distributed lesions, resulting in further distortion of normal tissue structures and complicating registration's similarity measure. In this work, we follow a multi-step context-aware image inpainting framework to generate synthetic tissue intensities in the tumor region. The coarse image-to-image translation is applied to make a rough inference of the missing parts. Then, a feature-level patch-match refinement module is applied to refine the details by modeling the semantic relevance between patch-wise features. A symmetry constraint reflecting a large degree of anatomical symmetry in the brain is further proposed to achieve better structure understanding. Deformable registration is applied between inpainted patient images and normal brains, and the resulting deformation field is eventually used to deform original patient data for the final alignment. The method was applied to the Multimodal Brain Tumor Segmentation (BraTS) 2018 challenge database and compared against three existing inpainting methods. The proposed method yielded results with increased peak signal-to-noise ratio, structural similarity index, inception score, and reduced L1 error, leading to successful patient-to-normal brain image registration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信