BME frontiers最新文献

筛选
英文 中文
Multicontrast Pocket Colposcopy Cervical Cancer Diagnostic Algorithm for Referral Populations. 转诊人群的多对照袖珍阴道镜癌症宫颈癌诊断算法。
BME frontiers Pub Date : 2022-08-25 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9823184
Erica Skerrett, Zichen Miao, Mercy N Asiedu, Megan Richards, Brian Crouch, Guillermo Sapiro, Qiang Qiu, Nirmala Ramanujam
{"title":"Multicontrast Pocket Colposcopy Cervical Cancer Diagnostic Algorithm for Referral Populations.","authors":"Erica Skerrett, Zichen Miao, Mercy N Asiedu, Megan Richards, Brian Crouch, Guillermo Sapiro, Qiang Qiu, Nirmala Ramanujam","doi":"10.34133/2022/9823184","DOIUrl":"10.34133/2022/9823184","url":null,"abstract":"<p><p><i>Objective and Impact Statement</i>. We use deep learning models to classify cervix images-collected with a low-cost, portable Pocket colposcope-with biopsy-confirmed high-grade precancer and cancer. We boost classification performance on a screened-positive population by using a class-balanced loss and incorporating green-light colposcopy image pairs, which come at no additional cost to the provider. <i>Introduction</i>. Because the majority of the 300,000 annual deaths due to cervical cancer occur in countries with low- or middle-Human Development Indices, an automated classification algorithm could overcome limitations caused by the low prevalence of trained professionals and diagnostic variability in provider visual interpretations. <i>Methods</i>. Our dataset consists of cervical images (<math><mi>n</mi><mo>=</mo><mn>1,760</mn></math>) from 880 patient visits. After optimizing the network architecture and incorporating a weighted loss function, we explore two methods of incorporating green light image pairs into the network to boost the classification performance and sensitivity of our model on a test set. <i>Results</i>. We achieve an area under the receiver-operator characteristic curve, sensitivity, and specificity of 0.87, 75%, and 88%, respectively. The addition of the class-balanced loss and green light cervical contrast to a Resnet-18 backbone results in a 2.5 times improvement in sensitivity. <i>Conclusion</i>. Our methodology, which has already been tested on a prescreened population, can boost classification performance and, in the future, be coupled with Pap smear or HPV triaging, thereby broadening access to early detection of precursor lesions before they advance to cancer.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9823184"},"PeriodicalIF":0.0,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Resolution Multiscale Imaging Enabled by Hybrid Open-Top Light-Sheet Microscopy. 高分辨率多尺度成像由混合式开顶光片显微镜实现。
BME frontiers Pub Date : 2022-08-13 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9761314
Hong Ye, Guohua Shi
{"title":"High-Resolution Multiscale Imaging Enabled by Hybrid Open-Top Light-Sheet Microscopy.","authors":"Hong Ye,&nbsp;Guohua Shi","doi":"10.34133/2022/9761314","DOIUrl":"https://doi.org/10.34133/2022/9761314","url":null,"abstract":"","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9761314"},"PeriodicalIF":0.0,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphoton Microscopes Go Big: Large-Scale In Vivo Imaging of Neural Dynamics. 多光子显微镜走向大:神经动力学的大规模体内成像。
BME frontiers Pub Date : 2022-07-26 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9803780
Janelle M P Pakan, Yuguo Tang
{"title":"Multiphoton Microscopes Go Big: Large-Scale In Vivo Imaging of Neural Dynamics.","authors":"Janelle M P Pakan,&nbsp;Yuguo Tang","doi":"10.34133/2022/9803780","DOIUrl":"https://doi.org/10.34133/2022/9803780","url":null,"abstract":"Since the days of Santiago Ramon y Cajal, and pioneering observations of the precise structure of single neurons as the building blocks of the brain, the field of neuroscience has been tasked with deciphering how these individual neuronal elements engender the complexity that defines brain function. This remains a major challenge in modern neuroscience to explain fundamental processes of perception, cognition, and behavior in terms of neural activity. Given the size of the brain, the number of neurons, and the distributed nature of neural activity across interconnected networks, it is increasingly clear that we need advanced systems to directly record this activity in real-time to assess both coordinated activity on a large scale and the brain’s high degree of specialization on a small scale. While seminal principles of brain structure and function have been described through histological examination and in vitro preparations, it is also becoming increasingly evident that a wholistic approach examining the living brain in action is indispensable. These factors combined, the need for multiscale approaches and in situ evaluation of neuronal activity, have fostered rapidly growing technological advances in the field of in vivo microscopy (for review see Kim and Schnitzer, 2022).","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9803780"},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser-Treated Surfaces for VADs: From Inert Titanium to Potential Biofunctional Materials. VADs的激光处理表面:从惰性钛到潜在的生物功能材料。
BME frontiers Pub Date : 2022-07-13 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9782562
Eduardo Bock, Wilhelm Pfleging, Dayane Tada, Erenilda Macedo, Nathalia Premazzi, Rosa Sá, Juliana Solheid, Heino Besser, Aron Andrade
{"title":"Laser-Treated Surfaces for VADs: From Inert Titanium to Potential Biofunctional Materials.","authors":"Eduardo Bock,&nbsp;Wilhelm Pfleging,&nbsp;Dayane Tada,&nbsp;Erenilda Macedo,&nbsp;Nathalia Premazzi,&nbsp;Rosa Sá,&nbsp;Juliana Solheid,&nbsp;Heino Besser,&nbsp;Aron Andrade","doi":"10.34133/2022/9782562","DOIUrl":"https://doi.org/10.34133/2022/9782562","url":null,"abstract":"<p><p><i>Objective</i>. Laser-treated surfaces for ventricular assist devices. <i>Impact Statement</i>. This work has scientific impact since it proposes a biofunctional surface created with laser processing in bioinert titanium. <i>Introduction</i>. Cardiovascular diseases are the world's leading cause of death. An especially debilitating heart disease is congestive heart failure. Among the possible therapies, heart transplantation and mechanical circulatory assistance are the main treatments for its severe form at a more advanced stage. The development of biomaterials for ventricular assist devices is still being carried out. Although polished titanium is currently employed in several devices, its performance could be improved by enhancing the bioactivity of its surface. <i>Methods</i>. Aiming to improve the titanium without using coatings that can be detached, this work presents the formation of laser-induced periodic surface structures with a topology suitable for cell adhesion and neointimal tissue formation. The surface was modified by femtosecond laser ablation and cell adhesion was evaluated <i>in vitro</i> by using fibroblast cells. <i>Results</i>. The results indicate the formation of the desired topology, since the cells showed the appropriate adhesion compared to the control group. Scanning electron microscopy showed several positive characteristics in the cells shape and their surface distribution. The <i>in vitro</i> results obtained with different topologies point that the proposed LIPSS would provide enhanced cell adhesion and proliferation. <i>Conclusion</i>. The laser processes studied can create new interactions in biomaterials already known and improve the performance of biomaterials for use in ventricular assist devices.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9782562"},"PeriodicalIF":0.0,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Particle-Mediated Histotripsy for the Targeted Treatment of Intraluminal Biofilms in Catheter-Based Medical Devices. 基于导管的医疗器械中靶向治疗管腔内生物膜的粒子介导的组织切片术。
BME frontiers Pub Date : 2022-07-05 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9826279
Christopher Childers, Connor Edsall, Isabelle Mehochko, Waleed Mustafa, Yasemin Yuksel Durmaz, Alexander L Klibanov, Jayasimha Rao, Eli Vlaisavljevich
{"title":"Particle-Mediated Histotripsy for the Targeted Treatment of Intraluminal Biofilms in Catheter-Based Medical Devices.","authors":"Christopher Childers,&nbsp;Connor Edsall,&nbsp;Isabelle Mehochko,&nbsp;Waleed Mustafa,&nbsp;Yasemin Yuksel Durmaz,&nbsp;Alexander L Klibanov,&nbsp;Jayasimha Rao,&nbsp;Eli Vlaisavljevich","doi":"10.34133/2022/9826279","DOIUrl":"10.34133/2022/9826279","url":null,"abstract":"<p><p><i>Objective</i>. This paper is an initial work towards developing particle-mediated histotripsy (PMH) as a novel method of treating catheter-based medical device (CBMD) intraluminal biofilms. <i>Impact Statement</i>. CBMDs commonly become infected with bacterial biofilms leading to medical device failure, infection, and adverse patient outcomes. <i>Introduction</i>. Histotripsy is a noninvasive focused ultrasound ablation method that was recently proposed as a novel method to remove intraluminal biofilms. Here, we explore the potential of combining histotripsy with acoustically active particles to develop a PMH approach that can noninvasively remove biofilms without the need for high acoustic pressures or real-time image guidance for targeting. <i>Methods</i>. Histotripsy cavitation thresholds in catheters containing either gas-filled microbubbles (MBs) or fluid-filled nanocones (NCs) were determined. The ability of these particles to sustain cavitation over multiple ultrasound pulses was tested after a series of histotripsy exposures. Next, the ability of PMH to generate selective intraluminal cavitation without generating extraluminal cavitation was tested. Finally, the biofilm ablation and bactericidal capabilities of PMH were tested using both MBs and NCs. <i>Results</i>. PMH significantly reduced the histotripsy cavitation threshold, allowing for selective luminal cavitation for both MBs and NCs. Results further showed PMH successfully removed intraluminal biofilms in Tygon catheters. Finally, results from bactericidal experiments showed minimal reduction in bacteria viability. <i>Conclusion</i>. The results of this study demonstrate the potential for PMH to provide a new modality for removing bacterial biofilms from CBMDs and suggest that additional work is warranted to develop histotripsy and PMH for treatment of CBMD intraluminal biofilms.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9826279"},"PeriodicalIF":0.0,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Noninvasive Low-Intensity Focused Ultrasound Mediates Tissue Protection following Ischemic Stroke. 无创低强度聚焦超声介导缺血性脑卒中后的组织保护。
BME frontiers Pub Date : 2022-07-04 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9864910
Alexandra M Kaloss, Lauren N Arnold, Eman Soliman, Maya Langman, Nathalie Groot, Eli Vlaisavljevich, Michelle H Theus
{"title":"Noninvasive Low-Intensity Focused Ultrasound Mediates Tissue Protection following Ischemic Stroke.","authors":"Alexandra M Kaloss,&nbsp;Lauren N Arnold,&nbsp;Eman Soliman,&nbsp;Maya Langman,&nbsp;Nathalie Groot,&nbsp;Eli Vlaisavljevich,&nbsp;Michelle H Theus","doi":"10.34133/2022/9864910","DOIUrl":"https://doi.org/10.34133/2022/9864910","url":null,"abstract":"<p><p><i>Objective and Impact Statement</i>. This study examined the efficacy and safety of pulsed, low-intensity focused ultrasound (LIFU) and determined its ability to provide neuroprotection in a murine permanent middle cerebral artery occlusion (pMCAO) model. <i>Introduction</i>. Focused ultrasound (FUS) has emerged as a new therapeutic strategy for the treatment of ischemic stroke; however, its nonthrombolytic properties remain ill-defined. Therefore, we examined how LIFU influenced neuroprotection and vascular changes following stroke. Due to the critical role of leptomeningeal anastomoses or pial collateral vessels, in cerebral blood flow restoration and tissue protection following ischemic stroke, we also investigated their growth and remodeling. <i>Methods</i>. Mice were exposed to transcranial LIFU (fundamental frequency: 1.1 MHz, sonication duration: 300 ms, interstimulus interval: 3 s, pulse repetition frequency: 1 kHz, duty cycle per pulse: 50%, and peak negative pressure: -2.0 MPa) for 30 minutes following induction of pMCAO and then evaluated for infarct volume, blood-brain barrier (BBB) disruption, and pial collateral remodeling at 24 hrs post-pMCAO. <i>Results</i>. We found significant neuroprotection in mice exposed to LIFU compared to mock treatment. These findings correlated with a reduced area of IgG deposition in the cerebral cortex, suggesting attenuation of BBB breakdown under LIFU conditions. We also observed increased diameter of CD31-postive microvessels in the ischemic cortex. We observed no significant difference in pial collateral vessel size between FUS and mock treatment at 24 hrs post-pMCAO. <i>Conclusion</i>. Our data suggests that therapeutic use of LIFU may induce protection through microvascular remodeling that is not related to its thrombolytic activity.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9864910"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array. 使用2D行-列寻址(RCA)阵列的三维剪切波弹性成像。
BME frontiers Pub Date : 2022-07-04 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9879632
Zhijie Dong, Jihun Kim, Chengwu Huang, Matthew R Lowerison, U-Wai Lok, Shigao Chen, Pengfei Song
{"title":"Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array.","authors":"Zhijie Dong,&nbsp;Jihun Kim,&nbsp;Chengwu Huang,&nbsp;Matthew R Lowerison,&nbsp;U-Wai Lok,&nbsp;Shigao Chen,&nbsp;Pengfei Song","doi":"10.34133/2022/9879632","DOIUrl":"10.34133/2022/9879632","url":null,"abstract":"<p><p><i>Objective</i>. To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. <i>Impact Statement</i>. The proposed method paves the way for clinical translation of 3D SWE based on the 2D RCA, providing a low-cost and high volume rate solution that is compatible with existing clinical systems. <i>Introduction</i>. SWE is an established ultrasound imaging modality that provides a direct and quantitative assessment of tissue stiffness, which is significant for a wide range of clinical applications including cancer and liver fibrosis. SWE requires high frame rate imaging for robust shear wave tracking. Due to the technical challenges associated with high volume rate imaging in 3D, current SWE techniques are typically confined to 2D. Advancing SWE from 2D to 3D is significant because of the heterogeneous nature of tissue, which demands 3D imaging for accurate and comprehensive evaluation. <i>Methods</i>. A 3D SWE method using a RCA array was developed with a volume rate up to 2000 Hz. The performance of the proposed method was systematically evaluated on tissue-mimicking elasticity phantoms and in an <i>in vivo</i> case study. <i>Results</i>. 3D shear wave motion induced by either external vibration or ARF was successfully detected with the proposed method. Robust 3D shear wave speed maps were reconstructed for phantoms and <i>in vivo</i>. <i>Conclusion</i>. The high volume rate 3D imaging provided by the 2D RCA array provides a robust and practical solution for 3D SWE with a clear pathway for future clinical translation.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9879632"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virtual Staining, Segmentation, and Classification of Blood Smears for Label-Free Hematology Analysis. 用于无标记血液学分析的血液涂片的虚拟染色、分割和分类。
IF 5
BME frontiers Pub Date : 2022-07-01 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9853606
Nischita Kaza, Ashkan Ojaghi, Francisco E Robles
{"title":"Virtual Staining, Segmentation, and Classification of Blood Smears for Label-Free Hematology Analysis.","authors":"Nischita Kaza, Ashkan Ojaghi, Francisco E Robles","doi":"10.34133/2022/9853606","DOIUrl":"10.34133/2022/9853606","url":null,"abstract":"<p><p><i>Objective and Impact Statement</i>. We present a fully automated hematological analysis framework based on single-channel (single-wavelength), label-free deep-ultraviolet (UV) microscopy that serves as a fast, cost-effective alternative to conventional hematology analyzers. <i>Introduction</i>. Hematological analysis is essential for the diagnosis and monitoring of several diseases but requires complex systems operated by trained personnel, costly chemical reagents, and lengthy protocols. Label-free techniques eliminate the need for staining or additional preprocessing and can lead to faster analysis and a simpler workflow. In this work, we leverage the unique capabilities of deep-UV microscopy as a label-free, molecular imaging technique to develop a deep learning-based pipeline that enables virtual staining, segmentation, classification, and counting of white blood cells (WBCs) in single-channel images of peripheral blood smears. <i>Methods</i>. We train independent deep networks to virtually stain and segment grayscale images of smears. The segmented images are then used to train a classifier to yield a quantitative five-part WBC differential. <i>Results.</i> Our virtual staining scheme accurately recapitulates the appearance of cells under conventional Giemsa staining, the gold standard in hematology. The trained cellular and nuclear segmentation networks achieve high accuracy, and the classifier can achieve a quantitative five-part differential on unseen test data. <i>Conclusion</i>. This proposed automated hematology analysis framework could greatly simplify and improve current complete blood count and blood smear analysis and lead to the development of a simple, fast, and low-cost, point-of-care hematology analyzer.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9853606"},"PeriodicalIF":5.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endoscopic Coregistered Ultrasound Imaging and Precision Histotripsy: Initial In Vivo Evaluation. 内窥镜配准超声成像和精确组织切片术:初步体内评估。
BME frontiers Pub Date : 2022-07-01 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9794321
Thomas G Landry, Jessica Gannon, Eli Vlaisavljevich, Matthew G Mallay, Jeffrey K Woodacre, Sidney Croul, James P Fawcett, Jeremy A Brown
{"title":"Endoscopic Coregistered Ultrasound Imaging and Precision Histotripsy: Initial <i>In Vivo</i> Evaluation.","authors":"Thomas G Landry,&nbsp;Jessica Gannon,&nbsp;Eli Vlaisavljevich,&nbsp;Matthew G Mallay,&nbsp;Jeffrey K Woodacre,&nbsp;Sidney Croul,&nbsp;James P Fawcett,&nbsp;Jeremy A Brown","doi":"10.34133/2022/9794321","DOIUrl":"10.34133/2022/9794321","url":null,"abstract":"<p><p><i>Objective</i>. Initial performance evaluation of a system for simultaneous high-resolution ultrasound imaging and focused mechanical submillimeter histotripsy ablation in rat brains. <i>Impact Statement</i>. This study used a novel combination of high-resolution imaging and histotripsy in an endoscopic form. This would provide neurosurgeons with unprecedented accuracy in targeting and executing nonthermal ablations in minimally invasive surgeries. <i>Introduction</i>. Histotripsy is a safe and effective nonthermal focused ablation technique. However, neurosurgical applications, such as brain tumor ablation, are difficult due to the presence of the skull. Current devices are too large to use in the minimally invasive approaches surgeons prefer. We have developed a combined imaging and histotripsy endoscope to provide neurosurgeons with a new tool for this application. <i>Methods</i>. The histotripsy component had a 10 mm diameter, operating at 6.3 MHz. Affixed within a cutout hole in its center was a 30 MHz ultrasound imaging array. This coregistered pair was used to ablate brain tissue of anesthetized rats while imaging. Histological sections were examined, and qualitative descriptions of ablations and basic shape descriptive statistics were generated. <i>Results</i>. Complete ablations with submillimeter area were produced in seconds, including with a moving device. Ablation progress could be monitored in real time using power Doppler imaging, and B-mode was effective for monitoring post-ablation bleeding. Collateral damage was minimal, with a 100 <i>μ</i>m maximum distance of cellular damage from the ablation margin. <i>Conclusion</i>. The results demonstrate a promising hardware suite to enable precision ablations in endoscopic procedures or fundamental preclinical research in histotripsy, neuroscience, and cancer.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9794321"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Impedance Imaging of Cells and Tissues: Design and Applications. 细胞和组织的阻抗成像:设计和应用。
BME frontiers Pub Date : 2022-06-09 DOI: 10.34133/2022/9857485
Raziyeh Bounik, Fernando Cardes, Hasan Ulusan, Mario M Modena, Andreas Hierlemann
{"title":"Impedance Imaging of Cells and Tissues: Design and Applications.","authors":"Raziyeh Bounik,&nbsp;Fernando Cardes,&nbsp;Hasan Ulusan,&nbsp;Mario M Modena,&nbsp;Andreas Hierlemann","doi":"10.34133/2022/9857485","DOIUrl":"10.34133/2022/9857485","url":null,"abstract":"<p><p>Due to their label-free and noninvasive nature, impedance measurements have attracted increasing interest in biological research. Advances in microfabrication and integrated-circuit technology have opened a route to using large-scale microelectrode arrays for real-time, high-spatiotemporal-resolution impedance measurements of biological samples. In this review, we discuss different methods and applications of measuring impedance for cell and tissue analysis with a focus on impedance imaging with microelectrode arrays in <i>in vitro</i> applications. We first introduce how electrode configurations and the frequency range of the impedance analysis determine the information that can be extracted. We then delve into relevant circuit topologies that can be used to implement impedance measurements and their characteristic features, such as resolution and data-acquisition time. Afterwards, we detail design considerations for the implementation of new impedance-imaging devices. We conclude by discussing future fields of application of impedance imaging in biomedical research, in particular applications where optical imaging is not possible, such as monitoring of <i>ex vivo</i> tissue slices or microelectrode-based brain implants.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"1-21"},"PeriodicalIF":0.0,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10620728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信