Biomedical engineering advances最新文献

筛选
英文 中文
Photosensitizer of phthalocyanine-conjugated chitosan-doped nano-silver for inactivation against bacteria and promote wound healing 酞菁偶联壳聚糖掺杂纳米银的光敏剂对细菌失活和促进伤口愈合
Biomedical engineering advances Pub Date : 2025-02-20 DOI: 10.1016/j.bea.2025.100147
Wenqing Lai , Huanliang Liu , Jun Yan, Lei Tian, Yue Shi, Zhuge Xi, Bencheng Lin
{"title":"Photosensitizer of phthalocyanine-conjugated chitosan-doped nano-silver for inactivation against bacteria and promote wound healing","authors":"Wenqing Lai ,&nbsp;Huanliang Liu ,&nbsp;Jun Yan,&nbsp;Lei Tian,&nbsp;Yue Shi,&nbsp;Zhuge Xi,&nbsp;Bencheng Lin","doi":"10.1016/j.bea.2025.100147","DOIUrl":"10.1016/j.bea.2025.100147","url":null,"abstract":"<div><div>Controlling microbial infection should receive more attention and research support against the rapidly growing phenomenon of bacterial resistance to antibiotics caused by the abuse and inappropriate use of antibiotics. Photodynamic antibacterial chemotherapy should be an alternative option to the antibiotic resistance problem. In this study, new photosensitive material of phthalocyanine-modified chitosan (Pc-CS) was synthesized and studied to effectively inactivate Gram-positive and Gram-negative bacteria, including drug-resistant strains, through photodynamic action. The new photosensitive material of Pc-CS@Ag which was synthesized by phthalocyanine-conjugated chitosan and doping nano-silver could photodynamically inactivate the Gram-positive and Gram-negative bacteria with 90 % maximum effect concentration (EC<sub>90</sub>) of 3.12–6.25 µg/mL, and had the similar eradiation activity against drug-resistant bacteria (EC<sub>90</sub>=6.25 µg/mL). Chitosan conjugation and nano-silver doping had less influence on the singlet oxygen yield of phthalocyanine. The material exhibited significant concentration and light intensity dependence in the photodynamic antibacterial mechanism and had a visible post-antibiotic effect. Moreover, the photosensitive material was effective in healing wounds in BALB/c mice. The healing wounds results suggest that the photosensitive material ameliorate excision wounds, and wound healing could be due to their effective antimicrobial activity and biocompatibility. Therefore, this photosensitive material has good potential for antibacterial applications.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100147"},"PeriodicalIF":0.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143453096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical and microstructural properties of additively manufactured porous titanium alloy constructs for orthopaedic and maxillofacial reconstruction 增材制造多孔钛合金矫形和颌面重建体的力学和微观结构性能
Biomedical engineering advances Pub Date : 2025-02-11 DOI: 10.1016/j.bea.2025.100148
Khaled M. Hijazi , Haojie Mao , David W. Holdsworth , S. Jeffrey Dixon , Amin S. Rizkalla
{"title":"Mechanical and microstructural properties of additively manufactured porous titanium alloy constructs for orthopaedic and maxillofacial reconstruction","authors":"Khaled M. Hijazi ,&nbsp;Haojie Mao ,&nbsp;David W. Holdsworth ,&nbsp;S. Jeffrey Dixon ,&nbsp;Amin S. Rizkalla","doi":"10.1016/j.bea.2025.100148","DOIUrl":"10.1016/j.bea.2025.100148","url":null,"abstract":"<div><div>Porous intraosseous implants, fabricated from titanium alloy by selective laser melting (SLM), promote osseointegration and decrease stress shielding. Nevertheless, the application of such constructs in surgery has been restricted due to issues with their structural and mechanical properties. In addition, the flexural properties of porous constructs are not well known. Hence, this research aimed to investigate the mechanical and microstructural properties of porous constructs made from Ti6Al4V alloy for applications such as mandibular reconstruction. Computer models were created of dumbbell-shaped and square prism constructs with cubic pore structures. Five strut thicknesses between 250 and 650 µm with a constant 1 mm unit cell size were created, which gave rise to pores of sizes between 350 and 750 µm. Nonporous models were used as controls. Constructs were fabricated from these models using selective laser melting. Computed tomography was used to investigate internal defects and surface roughness. Internal defects made up &lt; 1.0 % of the total volume. Loose and partially melted particles caused a rough surface on the struts, with arithmetic mean height ranging between 2.0 and 9.5 µm. Finite element analysis (FEA) was performed to simulate tensile and flexural loadings and predict locations of mechanical weakness. Static tensile and three-point bend tests were performed on SLM-built constructs using an Instron screw-type testing machine. The FEA models incorporated mechanical properties of Ti6Al4V, which were sourced from the stress-strain curves from tensile tests on nonporous constructs produced via selective laser melting. There was close agreement between the FEA simulations and the actual tensile and flexural strengths and moduli of the constructs (deviations &lt; 11 %). The results of real-life mechanical tests and FEA tests demonstrated that the modulus and strength values are strongly correlated with strut thickness (R<sup>2</sup>&gt;0.95). Porous Ti6Al4V constructs with strut thicknesses ranging between 350 and 450 µm were found to have modulus and strength values that matched those of the mandible. This study demonstrated that FEA models can accurately predict the mechanical behaviour of SLM-built porous constructs. This will permit the rapid design of patient-specific porous devices that facilitate bone alignment, vascularization, tissue ingrowth, and skeletal function.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100148"},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143463788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-based composite membranes from fish scales: A novel approach to harnessing collagen and hydroxyapatite for tissue engineering applications 鱼鳞生物基复合膜:利用胶原蛋白和羟基磷灰石进行组织工程应用的新方法
Biomedical engineering advances Pub Date : 2025-02-07 DOI: 10.1016/j.bea.2025.100146
Israel Núñez-Tapia , Jimena Macouzet-Garduño , Fernanda Ramírez-Ruiz , Febe Carolina Vázquez-Vázquez , Marco Antonio Álvarez-Pérez , Lauro Bucio-Galindo , María Cristina Piña-Barba
{"title":"Bio-based composite membranes from fish scales: A novel approach to harnessing collagen and hydroxyapatite for tissue engineering applications","authors":"Israel Núñez-Tapia ,&nbsp;Jimena Macouzet-Garduño ,&nbsp;Fernanda Ramírez-Ruiz ,&nbsp;Febe Carolina Vázquez-Vázquez ,&nbsp;Marco Antonio Álvarez-Pérez ,&nbsp;Lauro Bucio-Galindo ,&nbsp;María Cristina Piña-Barba","doi":"10.1016/j.bea.2025.100146","DOIUrl":"10.1016/j.bea.2025.100146","url":null,"abstract":"<div><div>Fish scales, a by-product of the fishing industry, have been identified as a potential source of hydroxyapatite and collagen due to their inherent composition. The present study aims to develop a bio-based membrane from fish scales as a raw material, evaluating its suitability for tissue engineering applications.</div><div>The characterisation of the resulting membranes was performed by infrared spectroscopy, which allowed the identification of peaks corresponding to the vibrational modes of the amides present in collagen. The presence of hydroxyapatite was confirmed by X-ray diffraction, the results of which were in agreement with the ICDD 009–0431 standard. The collagen denaturation temperature (70 °C) was determined using differential scanning calorimetry. Furthermore, the mechanical properties were evaluated by uniaxial tensile tests, following the standards of ASTM-D1708–96, and the Young's moduli were obtained as 7179 ± 77 kPa in dry conditions and 760 ± 133 kPa in wet conditions.</div><div>In tests with human gingival fibroblasts, the fish scale-derived membranes showed higher cell viability and significantly higher proliferation rates compared to the commercial type I collagen membrane used as a control (Matrixflex™, obtained from highly purified porcine peritoneum), highlighting the potential of fish scale-derived membranes as bio-based composite materials.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100146"},"PeriodicalIF":0.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue engineering and biosensing applications of carbon-based nanomaterials 碳基纳米材料的组织工程和生物传感应用
Biomedical engineering advances Pub Date : 2025-01-27 DOI: 10.1016/j.bea.2025.100145
Seydanur Yücer , Begüm Sarac , Fatih Ciftci
{"title":"Tissue engineering and biosensing applications of carbon-based nanomaterials","authors":"Seydanur Yücer ,&nbsp;Begüm Sarac ,&nbsp;Fatih Ciftci","doi":"10.1016/j.bea.2025.100145","DOIUrl":"10.1016/j.bea.2025.100145","url":null,"abstract":"<div><div>Carbon nanomaterials (CNMs) have emerged as a transformative class of materials in the biomedical field, offering exceptional versatility and efficacy. This study highlights the unique mechanical, electrical, and biocompatible properties of CNMs that make them indispensable for applications such as drug delivery, biosensing, tissue engineering, and medical implants. Specifically, graphene's remarkable conductivity and mechanical strength enhance biosensor sensitivity and scaffold durability, while the tubular structure and functional surface chemistry of carbon nanotubes (CNTs) improve cellular interactions and mechanical stability in implants. Carbon dots, with their tunable fluorescence and high biocompatibility, are proving to be powerful agents for bioimaging, enabling more precise diagnostics.</div><div>This review consolidates recent advancements in the synthesis, functionalization, and biomedical integration of CNMs, emphasizing their role in next-generation applications. Notably, it addresses challenges related to scalable production and clinical safety, offering insights into overcoming these obstacles. The findings underline the transformative potential of CNMs in revolutionizing therapeutic and diagnostic approaches, paving the way for innovative solutions in healthcare.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100145"},"PeriodicalIF":0.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring therapeutic strategies for androgen-independent prostate cancer using a magnetic coculture platform 利用磁性共培养平台探索雄激素非依赖性前列腺癌的治疗策略
Biomedical engineering advances Pub Date : 2025-01-13 DOI: 10.1016/j.bea.2025.100144
Anjani Chavali , Giles Fitzwilliams , Adam Germain , Sandra Khuon , Young-tae Kim
{"title":"Exploring therapeutic strategies for androgen-independent prostate cancer using a magnetic coculture platform","authors":"Anjani Chavali ,&nbsp;Giles Fitzwilliams ,&nbsp;Adam Germain ,&nbsp;Sandra Khuon ,&nbsp;Young-tae Kim","doi":"10.1016/j.bea.2025.100144","DOIUrl":"10.1016/j.bea.2025.100144","url":null,"abstract":"<div><div>Prostate cancer stands as the most diagnosed cancer in males and remains one of the leading causes of death among men in the United States. The progression of prostate cancer to a life-threatening state occurs upon metastasis, typically spreading to vital organs such as the liver, lungs, bones, and lymph nodes, where it sustains growth even in the absence of androgens. In this study, we employed a magnetic coculture device to investigate the interactions between androgen-independent prostate cancer (PC3) cells and healthy normal fibroblasts, aiming to discern their dynamics. Subsequently, the coculture was exposed to varying dosages of Fenbendazole to assess its efficacy differentially on healthy fibroblasts compared to androgen-independent prostate cells. Employing this straightforward coculture method, we observed significant growth, motility, and cluster formation of prostate cancer cells upon direct contact with surrounding fibroblasts. The impact of Fenbendazole was evident in its capacity to markedly diminish the growth and metastasis of prostate cancer cells relative to surrounding fibroblasts. Notably, our findings revealed that a dosage of 2.5 µM Fenbendazole significantly eradicated PC3 cells with minimal damage to surrounding fibroblasts, thus indicating its potential for prostate cancer treatment in-vivo models.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100144"},"PeriodicalIF":0.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochemical and biophysical cues of the extracellular matrix modulates stem cell fate: Progress and prospect in extracellular matrix mimicking biomaterials 细胞外基质调节干细胞命运的生化和生物物理线索:细胞外基质模拟生物材料的进展与展望
Biomedical engineering advances Pub Date : 2025-01-01 DOI: 10.1016/j.bea.2024.100143
Anuska Mishra , Unnati Modi , Rahul Sharma , Dhiraj Bhatia , Raghu Solanki
{"title":"Biochemical and biophysical cues of the extracellular matrix modulates stem cell fate: Progress and prospect in extracellular matrix mimicking biomaterials","authors":"Anuska Mishra ,&nbsp;Unnati Modi ,&nbsp;Rahul Sharma ,&nbsp;Dhiraj Bhatia ,&nbsp;Raghu Solanki","doi":"10.1016/j.bea.2024.100143","DOIUrl":"10.1016/j.bea.2024.100143","url":null,"abstract":"<div><div>Stem cell therapies hold immense promise for the treatment of a wide range of diseases; however, the full therapeutic potential remains untaped. This limitation arises primarily from our incomplete understanding of the complex mechanisms of stem cell niches. A promising avenue of research lies in the development of Extracellular Matrix (ECM)-based novel biomaterials, which closely mimic the natural microenvironment of stem cells. These biomaterials provide essential biophysical and biochemical cues necessary for mechanotransduction, thereby enhancing the efficacy and safety of stem cell therapies by precisely modulating stem cell fate. In this review, we discuss the critical role of the stem cell niche and its interplay with ECM, detailing its structural composition and functional significance. We further explore how the biophysical and biochemical factors of the ECM modulate specific transmembrane receptors, triggering intracellular signaling mechanisms that regulate cell morphology, cytoskeletal dynamics, viability, migration, and differentiation. Engineered biomaterials to replicate the properties of the ECM are discussed along with the incorporation of tailored biophysical and biochemical cues into scaffolds and biomaterials to modulate stem cell fate. Overall, this review underscores the innovative applications of ECM mimicking biomaterials in biomedical engineering, emphasizing their transformative potential to modulate stem cell fate and advance regenerative medicine.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100143"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gingival fibroblast seeded bioengineered scaffolds for treatment of localized gingival recession 牙龈成纤维细胞植入生物工程支架治疗局部牙龈萎缩
Biomedical engineering advances Pub Date : 2024-12-19 DOI: 10.1016/j.bea.2024.100142
Rajul Chordia , Aritri Ghosh , Shalini Dasgupta , Sayandeep Saha , Tirthankar Debnath , Ashit Kumar Pal , Ananya Barui
{"title":"Gingival fibroblast seeded bioengineered scaffolds for treatment of localized gingival recession","authors":"Rajul Chordia ,&nbsp;Aritri Ghosh ,&nbsp;Shalini Dasgupta ,&nbsp;Sayandeep Saha ,&nbsp;Tirthankar Debnath ,&nbsp;Ashit Kumar Pal ,&nbsp;Ananya Barui","doi":"10.1016/j.bea.2024.100142","DOIUrl":"10.1016/j.bea.2024.100142","url":null,"abstract":"<div><div>Gingival recession is a prevalent issue present in most of the Indian population, associated with interproximal tissue deficiency, leading to dental problems. Its treatment has remained a major problem in the field of periodontics due to autologous graft morbidity and limited healing associated with the current artificial grafts. The present study aims to is to develop bio-engineered chitosan-gelatin scaffolds seeded with primary gingival fibroblasts to address gingival recession as noninvasive grafts. Gingival fibroblasts were seeded on scaffolds with varying chitosan-gelatin ratios (1:1, 1:3) (v/v) and a chitosan control. Comprehensive characterization included morphological, mechanical, biochemical, and cellular analyses including cell viability, migration and transcriptomic studies. The chitosan-gelatin scaffolds (1:3) demonstrated a highly porous architecture with satisfactory biodegradation and swelling capacity. Furthermore, in vitro studies show significantly higher cellular compatibility, fibroblast migration, and F-actin expression. The upregulation of FGF-2 gene in this scaffold indicates its potential for promoting fibroblastic growth and improved wound healing potential. In addition, the antibacterial impact reflect its clinical potential of the fibroblast-seeded chitosan-gelatin (1:3) scaffold for potential tissue engineering applications in periodontal regeneration.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100142"},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shear-thinning conductive chitosan-based nano-hybrid hydrogels by host–guest supramolecular assembled poly ethylene glycol and reduced graphene oxide dual cross-linkers 采用主-客体超分子组装聚乙二醇和还原氧化石墨烯双交联剂制备导电壳聚糖基纳米杂化水凝胶
Biomedical engineering advances Pub Date : 2024-12-18 DOI: 10.1016/j.bea.2024.100141
Javad Saberi , Fathallah Karimzadeh , Jaleh Varshosaz , Sheyda Labbaf
{"title":"Shear-thinning conductive chitosan-based nano-hybrid hydrogels by host–guest supramolecular assembled poly ethylene glycol and reduced graphene oxide dual cross-linkers","authors":"Javad Saberi ,&nbsp;Fathallah Karimzadeh ,&nbsp;Jaleh Varshosaz ,&nbsp;Sheyda Labbaf","doi":"10.1016/j.bea.2024.100141","DOIUrl":"10.1016/j.bea.2024.100141","url":null,"abstract":"<div><div>Here, a chitosan-based shear-thinning and conductive nano-hybrid hydrogel is developed based on self-assembled host-guest (HG) supramolecular interaction between beta-cyclodextrin modified chitosan (Host, Cs-CD) and adamantane grafted polyethylene glycol (Guest, PEG-AD) and secondary cross-linking with reduced graphene oxide (rGO). The concentration of HG macromers handled the rheological and mechanical behavior of the forming hydrogel, the ratio of the guest macromer, and the amount of rGO. Dual cross-linking hydrogel (macromers concentration=10 wt%) H:<em>G</em> = 1:2 (CPH 102G3) had the highest mechanical strength and toughness (about 3-folds) compared to the (10 wt%) 1:2 hydrogel (CPH 102). Also, (15 %wt) 1:2 Hydrogel (CPH 152) had mechanical strength and toughness of about 6-folds compared to (10 wt%) 1:4 hydrogel (CPH 104). The electro-conductivity of Cs-PEG/rGO nano-hybrid hydrogel was between 3.5 to 6.55 mS.cm-1 and within the myocardial tissue conductivity range. The swelling ratio and degradation rate of hydrogels were also investigated. CPH 102G3 displayed lower than 45 % weight loss after 15 days of immersion in a phosphate buffer saline solution. Finally, all hydrogel samples demonstrated non-cytotoxicity 24 h post-seeding. After 120 h, cell proliferation was observed. In conclusion, Cs-PEG/rGO hydrogel promises to emerge as an injectable scaffold with controllable properties for electroactive tissue engineering applications.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100141"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New MAO coatings on multiprincipal equimassic β TiNbTaZr and TiNbTaZrMo alloys 多主等温β TiNbTaZr和TiNbTaZrMo合金的MAO新涂层
Biomedical engineering advances Pub Date : 2024-12-12 DOI: 10.1016/j.bea.2024.100139
Rafael F.M. dos Santos , Pedro A.B. Kuroda , Gerson S. de Almeida , Willian F. Zambuzzi , Carlos R. Grandini , Conrado R.M. Afonso
{"title":"New MAO coatings on multiprincipal equimassic β TiNbTaZr and TiNbTaZrMo alloys","authors":"Rafael F.M. dos Santos ,&nbsp;Pedro A.B. Kuroda ,&nbsp;Gerson S. de Almeida ,&nbsp;Willian F. Zambuzzi ,&nbsp;Carlos R. Grandini ,&nbsp;Conrado R.M. Afonso","doi":"10.1016/j.bea.2024.100139","DOIUrl":"10.1016/j.bea.2024.100139","url":null,"abstract":"<div><div>β titanium alloys are essential in biomedical applications due to their combination of high strength, low elastic modulus, and biocompatibility. Although high-entropy alloys (BioHEAs) containing Nb, Zr, Ta, and Mo offer high mechanical strength, their elevated elastic modulus can lead to stress shielding in orthopedic applications. To address these limitations, β-stable alloys with enhanced mechanical and surface properties are being developed to support osseointegration and cellular adhesion. The work focuses on innovative medium (MEA) and high entropy (HEA) equimassic β Ti alloys (quaternary Ti-25Ta-25Nb-25Zr and quinary Ti-20Zr-20Ta-20Nb-20Mo in wt.%) treated with micro-arc oxidation (MAO) to optimize their performance as biomaterials. The MAO process generated bioactive coatings enriched with Ca, P, and Mg, promoting bone cell proliferation. X-ray diffraction (XRD) identified β phase structures and revealed amorphous or partially crystalline coatings, with a ZrO₂ cubic phase noted in the MEA quaternary Ti-25Ta-25Nb-25Zr alloy. Surface morphology assessments showed porous and lamellar topographies that varied with alloy composition, resulting in increased hydrophilicity and optimal roughness. Confocal microscopy confirmed that the MAO coating thickness on MEA quaternary Ti-25Ta-25Nb-25Zr (10.4 μm) surpassed that on HEA (high entropy alloy) quinary Ti-20Zr-20Ta-20Nb-20Mo (4.2 μm). Cell viability and adhesion assays indicated significant biocompatibility, particularly for MEA (medium entropy alloy) quaternary Ti-25Ta-25Nb-25Zr, which benefits from a Mo-free composition. These results underscore the potential of these multiprincipal equimassic bcc (body centered cubic) β alloys for biomedical applications, possibly enhancing osteoblast attachment and sustain cell viability effectively.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100139"},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive study of traditional glaucoma drainage devices and emerging Micro Invasive Glaucoma Surgery (MIGS) devices: A review 传统青光眼引流装置和新兴微创青光眼手术装置的综合研究综述
Biomedical engineering advances Pub Date : 2024-12-11 DOI: 10.1016/j.bea.2024.100140
Anshika Garg , Gurpreet Singh , Shubham Gupta , Vivek Gupta , Arnab Chanda
{"title":"Comprehensive study of traditional glaucoma drainage devices and emerging Micro Invasive Glaucoma Surgery (MIGS) devices: A review","authors":"Anshika Garg ,&nbsp;Gurpreet Singh ,&nbsp;Shubham Gupta ,&nbsp;Vivek Gupta ,&nbsp;Arnab Chanda","doi":"10.1016/j.bea.2024.100140","DOIUrl":"10.1016/j.bea.2024.100140","url":null,"abstract":"<div><div>Glaucoma is a neurogenerative, irreversible disorder caused by elevated intraocular pressure (IOP) in the eye, which can lead to vision loss. Currently, reducing IOP by providing an alternate pathway to aqueous humor is the only proven method for preventing glaucoma. It was found in the literature that traditional Glaucoma Drainage Devices (GDD) have proven effective in safety and reducing intraocular pressure. In recent years, a category of Micro Invasive Glaucoma Surgery (MIGS) has emerged, offering smaller and less invasive surgical procedures compared to conventional GDD. This comprehensive literature review focuses on the fluid mechanics of these implants, their structural parameters, and associated clinical studies. The goal is to assist researchers, scientists, and manufacturers in improving the design of glaucoma implants to achieve long-term success.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100140"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信