{"title":"Simulated uterine contractions: Graph theory and connectivity-based analysis of EHG signals","authors":"Kamil Bader Eldine , Noujoud Nader , Mohamad Khalil , Catherine Marque","doi":"10.1016/j.bea.2025.100178","DOIUrl":"10.1016/j.bea.2025.100178","url":null,"abstract":"<div><div>Preterm labor represents the prominent cause of mortality and morbidity, highlighting the important need for improved preterm contraction prediction and management. One promising approach to resolving this challenge is to analyze the electrohysterographic (EHG) signal, which records the electrical activity regulating uterine contractions. Analyzing the features of the EHG signal contributes valuable data to detect labor. In this paper, we propose a new framework using simulated EHG signals to identify features sensitive to uterine connectivity. We focus on EHG signal propagation during labor, recorded by multiple electrodes. We simulated EHG signals in different groups to determine which connectivity methods and graph parameters best represent the two main factors driving uterine synchronization: short-distance propagation (via electrical diffusion, ED) and long-distance synchronization (via mechanotransduction, EDM). Using the uterine model, signals were first simulated using just electrical diffusion by modifying the tissue resistance; second, signals were simulated using ED and mechanotransduction by holding the tissue resistance constant and varying the model parameters that affect mechanotransduction. We used the bipolar technique to construct our simulated EHGs by modeling a matrix of 16 surface electrodes organized in a 4 × 4 matrix placed on the pregnant woman’s abdomen. Our results show that even a simplified electromechanical model can be useful for monitoring uterine synchronization using simulated EHG signals. The differences seen between the selection performed by Fscore on real and simulated EHG signals show that when employing the mean function, the best features are H2(Str), FW_h2 alone, and in combination with PR, BC, and CC. The best characteristics that demonstrate a shift in the mechanotransduction process are H2 alone or in combination with Str, R2(PR), and ICOH(Str). The best characteristics that demonstrate a shift in electrical diffusion are H2 alone and in combination with Eff, PR, and BC.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100178"},"PeriodicalIF":0.0,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144069187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robust and sparse estimator for EEG source localization","authors":"Teja Mannepalli , Aurobinda Routray","doi":"10.1016/j.bea.2025.100177","DOIUrl":"10.1016/j.bea.2025.100177","url":null,"abstract":"<div><div>EEG source localization involves reconstructing brain activity from observed EEG measurements, a critical task for diagnosing various neurological disorders. The distributed approach to this problem is inherently ill-posed, posing significant challenges. In this study, we present a sparsity-controlled Lorentzian norm-based method for EEG source localization. This approach effectively balances robustness to measurement noise and sparsity in the solution.</div><div>The proposed method employs a non-linear conjugate gradient descent algorithm to minimize the loss function, where the Lorentzian norm replaces the conventional <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> norm. The Lorentzian norm’s unique ability to handle impulsive noise ensures precise estimation of active sources, even under challenging conditions. Comparative analyses with <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><mi>p</mi><mo><</mo><mn>1</mn></mrow></math></span> norm-based methods highlight the Lorentzian norm’s superior robustness and sparsity control. The results demonstrate that this novel approach improves the accuracy and reliability of EEG source localization, making it a valuable tool for medical applications.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100177"},"PeriodicalIF":0.0,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144069188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nur Mohammad Fahad , Mohaimenul Azam Khan Raiaan , Arefin Ittesafun Abian , Ripon Kumar Debnath , Sidratul Montaha , Mirjam Jonkman , Sami Azam
{"title":"Advanced biomedical imaging for identifying blood cell type: Integrating segmentation, feature extraction, and GraphSAGE model","authors":"Nur Mohammad Fahad , Mohaimenul Azam Khan Raiaan , Arefin Ittesafun Abian , Ripon Kumar Debnath , Sidratul Montaha , Mirjam Jonkman , Sami Azam","doi":"10.1016/j.bea.2025.100174","DOIUrl":"10.1016/j.bea.2025.100174","url":null,"abstract":"<div><h3>Background</h3><div>The analysis of blood, including red blood cells (RBC) and different types of white blood cells (WBCs) plays a major role in the diagnosis of certain diseases. Automated segmentation of blood cells and their components can assist clinicians in effectively making diagnoses; however, it is quite challenging Objective: This study proposes a computerized approach to assessing the significance of biomedical imaging. It presents a framework for segmenting blood cells as well as their nuclei from the histopathological images of multiple datasets. Additionally, a custom algorithm is developed for blood cell counting.</div></div><div><h3>Methods</h3><div>This study introduces two automated methods for WBC analysis, including image segmentation to distinguish between WBCs and RBCs, the nuclei of the WBC, and classifying WBC types using clinically important features. An effective segmentation approach with image preprocessing algorithms is developed for automatic counting of WBCs and RBCs. An improved GraphSAGE model is constructed to classify blood cells. Clinically relevant features are extracted from segmented WBCs and nuclei for a final dataset. Feature ranking analysis identifies optimal features and reduces dimensionality, aiding graph dataset construction based on data similarity.</div></div><div><h3>Results</h3><div>Our proposed model achieved an accuracy of 96.67 %. A comparative analysis with benchmark models is done to assess the effectiveness of the model. The explainability of the model is addressed to enhance the transparency of the diagnostic system and provide insight into the decision-making process.</div></div><div><h3>Conclusion</h3><div>Leveraging the automated, simultaneous segmentation of blood cells and exploring their relationships for effective classification substantially helps to improve the reliability and applicability of this diagnostic system and aid clinicians.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100174"},"PeriodicalIF":0.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143935985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Idris Zubairu Sadiq , Fatima Sadiq Abubakar , Babangida Sanusi Katsayal , Bashiru Ibrahim , Auwal Adamu , Mohammed Aliyu Usman , Mukhtar Aliyu , Mukhtar Adeiza Suleiman , Aliyu Muhammad
{"title":"Stem cells in regenerative medicine: Unlocking therapeutic potential through stem cell therapy, 3D bioprinting, gene editing, and drug discovery","authors":"Idris Zubairu Sadiq , Fatima Sadiq Abubakar , Babangida Sanusi Katsayal , Bashiru Ibrahim , Auwal Adamu , Mohammed Aliyu Usman , Mukhtar Aliyu , Mukhtar Adeiza Suleiman , Aliyu Muhammad","doi":"10.1016/j.bea.2025.100172","DOIUrl":"10.1016/j.bea.2025.100172","url":null,"abstract":"<div><div>Stem Cells (SCs) have become potentially instrumental in addressing many human diseases such as cancer, diabetes, age-related diseases and tissue defects. The unique ability of SCs to multiply indefinitely and differentiate into various cell types makes them invaluable in regenerative medicine and treatment. Regenerative medicine is an advancing field that focuses on restoring tissue and organ function in individuals with severe injuries and chronic illnesses. Pluripotent cells, capable of adopting roles from any of the three germ layers, exhibit exceptional versatility and are promising for a wide range of medical conditions. They also offer a solution to limitations posed by animal models in understanding specific disorders. Recent breakthroughs have shown that combining SCs with cutting-edge technologies like 3D bioprinting and 3D culture systems can revolutionize tissue engineering and organ regeneration. 3D bioprinting allows precise construction of complex tissue structures, bringing us closer to recreating functional organs for transplantation. Moreover, the integration of SCs with gene editing techniques presents unprecedented opportunities for precise genetic modification, correcting disease-causing mutations and opening avenues for personalized therapies. In addition, SCs play an important role in drug discovery and testing, serving as valuable models for studying disease mechanisms and screening potential therapeutic biomolecules. This paper provides a comprehensive exploration of SCs, transcription factors, diverse therapeutic applications of these cells as well as their role in the fields of tissue engineering, 3D bioprinting, 3D culture systems, gene editing, disease modeling, and drug discovery and testing.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100172"},"PeriodicalIF":0.0,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143922931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoshitaka Kameo , Kei Imai , Yuki Miya , Young Kwan Kim , Taiji Adachi
{"title":"In silico model of mechano-biochemical bone remodeling characterizes the therapeutic effects of osteoporosis drugs depending on the action mechanism","authors":"Yoshitaka Kameo , Kei Imai , Yuki Miya , Young Kwan Kim , Taiji Adachi","doi":"10.1016/j.bea.2025.100176","DOIUrl":"10.1016/j.bea.2025.100176","url":null,"abstract":"<div><div>Osteoporosis stems from an imbalance between bone resorption and formation during bone remodeling, a mechano-biochemical coupling event that intercellular signaling regulates among the bone cells in response to the mechanical environment. Osteoporosis treatment necessitates the modulation of impaired bone remodeling by drug administration to restore an appropriate balance in bone resorption–formation. Characterizing the therapeutic effects of osteoporosis drugs based on their molecular mechanisms of action is crucial to prevent adverse effects and improve the therapeutic efficacy. Herein, we characterized the therapeutic effects of osteoporosis drugs using an <em>in silico</em> model of mechano-biochemical bone remodeling, enabling examination of its spatial and temporal behaviors. We conducted computer simulations to assess osteoporosis drug treatments using two drugs with different mechanisms of action: an anti-receptor activator of nuclear factor-κB ligand (RANKL) antibody (denosumab) and a RANKL production inhibitor. Both drugs restored functionally-adapted trabecular bone morphology when dosages were appropriately adjusted. However, denosumab exhibited more stable therapeutic effects despite dosage changes in osteoporosis treatment. Thus, our medication simulation effectively depicted the therapeutic effects of osteoporosis drugs, illustrating their efficacy based on their mechanisms of action. We expect that medication simulations utilizing an <em>in silico</em> model of mechano-biochemical bone remodeling will expedite the drug discovery process by thoroughly analyzing molecular, cellular, tissue, and organ dynamics during drug treatment.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100176"},"PeriodicalIF":0.0,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143929469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Martingo, Sara Baptista-Silva, Manuela Pintado, Sandra Borges
{"title":"A new vision upon hemodialysis: A shift from synthetic to sustainable chitosan membranes","authors":"Maria Martingo, Sara Baptista-Silva, Manuela Pintado, Sandra Borges","doi":"10.1016/j.bea.2025.100175","DOIUrl":"10.1016/j.bea.2025.100175","url":null,"abstract":"<div><div>The article provides a comprehensive review of chronic kidney disease (CKD), covering its epidemiology, pathophysiology, diagnosis, and management. It highlights CKD's increasing prevalence globally and its significant impact on public health due to its association with cardiovascular diseases and progression to end-stage kidney disease. The article delves into the diagnostic criteria, including the use of glomerular filtration rate (GFR) and albuminuria levels, and outlines the stages of CKD to facilitate early detection and management. It also discusses renal replacement therapies (RRT) such as dialysis and transplantation, comparing hemodialysis (HD) and peritoneal dialysis (PD) in terms of efficiency, complications, and quality of life impacts.</div><div>The transition towards sustainable dialysis involves the innovative integration of chitosan, a biopolymer into membrane technology. Current synthetic membranes, though functional, fall short in biocompatibility and sustainability. Chitosan's introduction aims to mitigate these issues by harnessing its advantageous biological and eco-friendly properties. Leveraging chitosan not only addresses environmental concerns by providing a sustainable alternative but also exploits the full potential of its properties to revolutionize RRT. The shift towards chitosan-enriched membranes represents a significant stride in advancing dialysis treatment, focusing on patient safety, environmental sustainability, and the effective management of CKD. This approach underscores the importance of innovation in healthcare, specifically in the development of dialysis technologies that prioritize both patient welfare and environmental sustainability.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100175"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143922932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-newtonian fluid lens for wearable planewave ultrasound imaging system","authors":"Pisharody Harikrishnan Gopalakrishnan , Mahesh Raveendranatha Panicker","doi":"10.1016/j.bea.2025.100173","DOIUrl":"10.1016/j.bea.2025.100173","url":null,"abstract":"<div><div>Ultrafast ultrasound imaging using planewaves has been found significant for many applications in the recent past. This work proposes a novel method for converging planewaves for wearable ultrafast ultrasound imaging systems using a concave non-Newtonian fluid lens. Due to the concave shape of the designed non-Newtonian fluid lens, ultrasound wave convergence on transmit can be achieved, which could enable deeper imaging with planewaves. Further, by employing multi-angle planewaves, a high-resolution high frame rate ultrasound imaging system can be developed. The proposed passive ultrasound converging lens demonstrated satisfactory performance for in vitro imaging (wire phantoms and steel screw phantoms) and in vivo imaging (human carotid artery and upper arm). The in vitro and in vivo results showed an improvement of 47.31 % of lateral resolution, 44.57 % of intensity with significant contrast to noise ratio improvement greater than 3 dB and observable drop in acoustic clutter levels at 7.6 MHz centre frequency. The proposed non-Newtonian fluid lens demonstrated 18 % of dehydration rate, suitable for continuous long period ultrasound imaging. The utility of the proposed approach was further confirmed by observing an increase in wave intensity with decreased radius of curvature values of the lens used in the system, which is of significance in focused ultrasound applications. The passive ultrasound non-Newtonian converging lens with the adjustable focusing capability, ergonomic design, and low cost of deployment without significantly altering the existing setup would open doors for upgradation of traditional systems to a wide range of applications in high frame-rate US imaging system.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100173"},"PeriodicalIF":0.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143922933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zubeir Allum Saib , Farid Abed , Mergen H. Ghayesh , Marco Amabili
{"title":"A review of fluid-structure interaction: blood flow in arteries","authors":"Zubeir Allum Saib , Farid Abed , Mergen H. Ghayesh , Marco Amabili","doi":"10.1016/j.bea.2025.100171","DOIUrl":"10.1016/j.bea.2025.100171","url":null,"abstract":"<div><div>Over the past decade, Fluid-Structure Interaction studies related to blood vessels have been an active area of research, as they adequately capture the multiphysics of blood flow within the circulatory system. Despite the growing interest, only few state-of-the-art reviews have been published in the literature, each focusing individually on the coronary artery, carotid artery, aorta, heart valves and peripheral arteries. This systematic review assesses the current research and implications of Fluid-Structure Interaction implementation strategies in relation to human arteries. It is meant to comprehensively amalgamate research studies on an array of arteries coupled with cardiovascular complications such as atherosclerosis, plaque calcification, aneurysms, aortic dissections and valve dysfunction. It additionally covers computational finite element and finite volume solver demands, coupling schemes, inlet and outlet boundary conditions specifications, Newtonian and non-Newtonian blood rheological properties, laminar and turbulent flow types, as well as the modelling of the vessel wall’s hyperelastic and viscoelastic mechanical behavior. The research information is retrieved from the last ten years and summarized in a tabulated format, to help researchers in easily extracting useful information for future investigations and reviews.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100171"},"PeriodicalIF":0.0,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143891718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ECG-based cardiac arrhythmia classification using fuzzy encoded features and deep neural networks","authors":"Kiruthika Balakrishnan , Durgadevi Velusamy , Karthikeyan Ramasamy , Lisiane Pruinelli","doi":"10.1016/j.bea.2025.100167","DOIUrl":"10.1016/j.bea.2025.100167","url":null,"abstract":"<div><div>Cardiac arrhythmia, characterized by an irregular heart rhythm, is a leading cause of sudden and unexpected deaths among patients with cardiovascular diseases. The electrocardiogram (ECG) is a widely utilized non-invasive tool for detecting cardiac arrhythmias. This study investigates the effectiveness of ECG signals in diagnosing various irregular heart rhythms and proposes a novel framework integrating a fuzzy system with deep neural networks. Our approach combines Fourier–Bessel Series Expansion (FBSE)-Tunable Q Wavelet Transform (TQWT) and Principal Component Analysis (PCA) for automatic arrhythmia classification. Compared to conventional deep learning models that rely on raw ECG signals, our method enhances interpretability and feature extraction by incorporating time–frequency analysis and fuzzy feature encoding. Experimental validation using the MIT-BIH dataset demonstrated that our approach outperforms state-of-the-art models in classifying five arrhythmia categories (N, SVEB, VEB, Q, and F) based on the Association for the Advancement of Medical Instrumentation (AAMI) standards. Our model achieved precision scores of 0.98 (N), 0.95 (F), 0.98 (VEB), 0.90 (SVEB), and 0.99 (Q), with corresponding recall values of 1.00 (N), 0.74 (F), 0.93 (VEB), 0.72 (SVEB), and 0.98 (Q). The integration of FBSE-TQWT with a fuzzy deep neural network represents a substantial advancement in ECG-based arrhythmia detection, offering improved accuracy, robustness, and clinical applicability, particularly in distinguishing minority classes such as supraventricular ectopic beats (SVEB) and fusion beats (F).</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100167"},"PeriodicalIF":0.0,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143882559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melike Cagan-Algan , Muge Anil-Inevi , Seren Kecili , Ece Inal , H. Cumhur Tekin , Gulistan Mese , Engin Ozcivici
{"title":"Negative magnetophoresis guided unidirectional cell patterning on culture surface","authors":"Melike Cagan-Algan , Muge Anil-Inevi , Seren Kecili , Ece Inal , H. Cumhur Tekin , Gulistan Mese , Engin Ozcivici","doi":"10.1016/j.bea.2025.100169","DOIUrl":"10.1016/j.bea.2025.100169","url":null,"abstract":"<div><div>Cell patterning is a significant tool in tissue engineering, enabling the directed deposition of cells into specific locations to achieve biological relevance. Conventional cell patterning techniques often involve time-consuming modifications or bioprinting, potentially affecting cell viability. This study presents a novel, single-step magnetic patterning system for label-free linear cell patterning using negative magnetophoresis. A custom magnetic system and culture chamber enabled the rapid (3 h) imprinting of cells on a surface without substrate modification. This approach achieved linear patterns with a thickness of ∼1 mm using a safe concentration of a paramagnetic agent (5 mM Gadolinium chelate, Gadobutrol). The patterns maintained structural integrity for 48 h and were successfully combined with osteogenic and adipogenic differentiation protocols. This cost-effective and contactless manipulation technique holds promise for diverse applications in tissue engineering, drug discovery, and fundamental cell biology research.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100169"},"PeriodicalIF":0.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143894351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}