Robust and sparse estimator for EEG source localization

Teja Mannepalli , Aurobinda Routray
{"title":"Robust and sparse estimator for EEG source localization","authors":"Teja Mannepalli ,&nbsp;Aurobinda Routray","doi":"10.1016/j.bea.2025.100177","DOIUrl":null,"url":null,"abstract":"<div><div>EEG source localization involves reconstructing brain activity from observed EEG measurements, a critical task for diagnosing various neurological disorders. The distributed approach to this problem is inherently ill-posed, posing significant challenges. In this study, we present a sparsity-controlled Lorentzian norm-based method for EEG source localization. This approach effectively balances robustness to measurement noise and sparsity in the solution.</div><div>The proposed method employs a non-linear conjugate gradient descent algorithm to minimize the loss function, where the Lorentzian norm replaces the conventional <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> norm. The Lorentzian norm’s unique ability to handle impulsive noise ensures precise estimation of active sources, even under challenging conditions. Comparative analyses with <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> norm-based methods highlight the Lorentzian norm’s superior robustness and sparsity control. The results demonstrate that this novel approach improves the accuracy and reliability of EEG source localization, making it a valuable tool for medical applications.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100177"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical engineering advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667099225000337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

EEG source localization involves reconstructing brain activity from observed EEG measurements, a critical task for diagnosing various neurological disorders. The distributed approach to this problem is inherently ill-posed, posing significant challenges. In this study, we present a sparsity-controlled Lorentzian norm-based method for EEG source localization. This approach effectively balances robustness to measurement noise and sparsity in the solution.
The proposed method employs a non-linear conjugate gradient descent algorithm to minimize the loss function, where the Lorentzian norm replaces the conventional 2 norm. The Lorentzian norm’s unique ability to handle impulsive noise ensures precise estimation of active sources, even under challenging conditions. Comparative analyses with 2, 1 and p,p<1 norm-based methods highlight the Lorentzian norm’s superior robustness and sparsity control. The results demonstrate that this novel approach improves the accuracy and reliability of EEG source localization, making it a valuable tool for medical applications.
脑电信号源定位的鲁棒稀疏估计
脑电图源定位涉及从观察到的脑电图测量中重建大脑活动,这是诊断各种神经系统疾病的关键任务。解决这个问题的分布式方法本质上是病态的,带来了重大的挑战。在这项研究中,我们提出了一种稀疏控制的基于洛伦兹范数的脑电信号源定位方法。这种方法有效地平衡了解决方案中测量噪声和稀疏性的鲁棒性。该方法采用非线性共轭梯度下降算法最小化损失函数,用洛伦兹范数代替传统的l2范数。洛伦兹范数处理脉冲噪声的独特能力确保了即使在具有挑战性的条件下也能精确估计有源。与基于l2, p1和p1范数的方法的比较分析表明,Lorentzian范数具有较好的鲁棒性和稀疏性控制。结果表明,该方法提高了脑电信号源定位的准确性和可靠性,为医学应用提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical engineering advances
Biomedical engineering advances Bioengineering, Biomedical Engineering
自引率
0.00%
发文量
0
审稿时长
59 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信