Wenqi Zhang , Chuandong Ma , Zhisen Li , Meng He , Qingbiao Wang , Lin Li , Xiaofang You
{"title":"Study on slurry forming performance and slurry combustion characteristics of diesel modified coal","authors":"Wenqi Zhang , Chuandong Ma , Zhisen Li , Meng He , Qingbiao Wang , Lin Li , Xiaofang You","doi":"10.1016/j.apt.2024.104619","DOIUrl":"10.1016/j.apt.2024.104619","url":null,"abstract":"<div><p>In this study, modified low rank coal water slurry (M-LRCWS) was prepared by using diesel modified low rank coal (LRC) and compared with low LRC water slurry (LRCWS) to investigate the slurry formation mechanism and combustion characteristics of coal water slurry. Meanwhile, the combustion kinetics of coal-water slurry was investigated using kinetic methods to probe the combustion reaction mechanism. The results showed that the slurry formation concentration of LRC was 70 %, while the slurry formation concentration of M-LRCWS was 72 %, which was an increase of 2 %. The diesel modification positively affected the stability of CWS. The comprehensive combustion characteristics index of the same slurry deteriorated with increasing heating rate. At the same heating rate, M-LRCWS has better combined combustion performance, higher flammability and more stable ignition performance. Combustion kinetics calculations showed that the reaction activation energies were 105.50 kJ/mol for M-LRCWS and 99.59 kJ/mol for LRCWS using the FWO method, and 93.48 kJ/mol for M-LRCWS and 92.68 kJ/mol for LRCWS using the Starink method. The activation energy of M-LRCWS is slightly higher than that of LRCWS, which indicates that the diesel fuel is encapsulated in the coal particles and it is difficult to activate the substance. As a result, the dispersion system is more stable and favorable for storage and transportation. The physical functions of LRCWS and M-LRCWS were calculated using the Achar differential equation and the Coats-Redfern integral equation, and the results showed that both LRCWS and M-LRCWS followed the tertiary reaction (F3) mechanism.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 10","pages":"Article 104619"},"PeriodicalIF":4.2,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saad Ali , Faiz Ahmad , Puteri Sri Melor Megat Yusoff , Norhamidi Muhamad , Khurshid Malik , Chowdhury Ahmed Shahed
{"title":"Mechanical properties’ investigation of Ag decorated graphene nanoplatelets and Ag decorated N-doped graphene nanoplatelets reinforced Cu composites","authors":"Saad Ali , Faiz Ahmad , Puteri Sri Melor Megat Yusoff , Norhamidi Muhamad , Khurshid Malik , Chowdhury Ahmed Shahed","doi":"10.1016/j.apt.2024.104616","DOIUrl":"10.1016/j.apt.2024.104616","url":null,"abstract":"<div><p>Poor wettability and weak graphene/Cu interface limit the mechanical properties’ enhancement in graphene/Cu composites. This study devised an interface enhancement approach by Ag decoration of graphene nanoplatelets (Ag-GNPs) and Ag decorated nitrogen doped graphene (Ag-N-GNP) without oxide (during decoration) and carbide (during sintering) formation. Sonication was used to functionalize GNPs for decoration with Ag nanoparticles (NPs) and Cu composites (Ag-GNP/Cu and Ag-N-GNP/Cu) were fabricated using cold pressing (low-pressure) and sintering. 2-Ag-GNP/Cu (2 vol% of Ag-GNPs) and 2-Ag-N-GNP/Cu (2 vol% of Ag-N-GNPs) possessed highest sintered density. In addition, 2-Ag-GNP/Cu and 1-Ag-N-GNP/Cu showed highest microhardness and tensile strength (theoretical), respectively. Higher concentration of Ag NPs on GNPs in Ag-N-GNP (oxygen and nitrogen functionalization) showed lower mechanical properties for Ag-N-GNP/Cu compared to Ag-GNP/Cu with limited Ag NPs on GNPs (oxygen functionalization). Interface modification strategy with noble metal NPs bridging between GNP and Cu suggests controlled functionalization and noble metal NPs’ attachment on GNPs for effective mechanical properties’ enhancement in graphene Cu composites.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104616"},"PeriodicalIF":4.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Shereef , Ayona K. Jose , Jibi Kunjumon , P.A. Aleena , M.A. Anu , Wasim Akram , R.P. Jebin , T.S. Xavier , Tuhin Maity , D. Sajan
{"title":"Study on preparation, magnetic properties and performance of electrochemical supercapacitor based on La2FeMnO6 double perovskite for energy storage applications and their charge storage mechanism","authors":"A. Shereef , Ayona K. Jose , Jibi Kunjumon , P.A. Aleena , M.A. Anu , Wasim Akram , R.P. Jebin , T.S. Xavier , Tuhin Maity , D. Sajan","doi":"10.1016/j.apt.2024.104618","DOIUrl":"10.1016/j.apt.2024.104618","url":null,"abstract":"<div><p>La<sub>2</sub>FeMnO<sub>6</sub> double perovskites with multifunctional properties have sparked attention in recent years. Nevertheless, there was no direct study elaborating its electrochemical properties for supercapacitor applications. Herein, La<sub>2</sub>FeMnO<sub>6</sub> double perovskites were synthesized by the sol–gel method and their structural, morphological, vibrational, optical, magnetic, and electrochemical properties were determined. The X-ray diffraction along with Rietveld refinement showed a cubic structure with Pm-3m space group, and its randomly distributed quasi-spherical morphology was observed from its SEM image. The presence of multiple oxidation states of Mn and Fe in La<sub>2</sub>FeMnO<sub>6</sub> was supported by the formation of double exchange interactions between Fe<sup>2+</sup>-O<sup>2−</sup>-Fe<sup>3+</sup> and Mn<sup>3+</sup>-O<sup>2−</sup>-Mn<sup>4+</sup>. The mesoporous structure with 41.79813 m<sup>2</sup>/g surface area was estimated from the BET analysis. The electrochemical properties of La<sub>2</sub>FeMnO<sub>6</sub> were determined using the three electrode setup, and the Cyclic Voltammetric curves possess a quasi-rectangular shape with a specific capacitance of about 10.9 mF g<sup>−1</sup> at a current density of 0.5 mA g<sup>−1</sup>. Dunn’s method illustrate the electrode’s charge storage mechanism and it was determined that the diffusion-controlled process surpasses the capacitive processes at low scan rates. The cyclic stability demonstrated that 96 % of initial specific capacitance was retained even after 5000 cycles which implied the long-term stability and practical use of La<sub>2</sub>FeMnO<sub>6</sub> double perovskites. The magnetic analysis showed the presence of ferromagnetic and anti-ferromagnetic interactions both in this system and they are short-range in nature.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104618"},"PeriodicalIF":4.2,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulating study of atmospheric corrosion of Ni-advanced weathering steels in salinity environment: Formation and structure of magnetite rust particles prepared from FeCl2 solutions containing Ni2+ at neutral pH","authors":"Hidekazu Tanaka , Ayaka Nishitani","doi":"10.1016/j.apt.2024.104605","DOIUrl":"10.1016/j.apt.2024.104605","url":null,"abstract":"<div><p>In order to elucidate the role of alloying Ni in Ni-advanced weathering steels on the formation of Fe<sub>3</sub>O<sub>4</sub> (magnetite) rust particles by atmospheric corrosion in salinity environment, aqueous FeCl<sub>2</sub> solutions containing various amounts of NiCl<sub>2</sub> were aged under bubbling the air at 50 °C for 24 h. The atomic ratio Ni/Fe of the solution was 0 – 0.2 and the solution pH before aging was about 7 over the whole Ni/Fe ratios. Aging for 3 h generated the Green rust(Cl<sup>-</sup>) ([Fe<sub>3</sub><sup>II</sup>Fe<sup>III</sup>(OH)<sub>8</sub>]<sup>+</sup>[Cl·<em>n</em>H<sub>2</sub>O]<sup>-</sup>) as a precursor of Fe<sub>3</sub>O<sub>4</sub>. Added Ni<sup>2+</sup> was incorporated into Green rust(Cl<sup>-</sup>) to form Ni<sup>2+</sup>-substituted Green rust(Cl<sup>-</sup>) ([Fe<sub>3-x</sub><sup>II</sup>Ni<sub>x</sub><sup>II</sup>Fe<sup>III</sup>(OH)<sub>8</sub>]<sup>+</sup>[Cl·<em>n</em>H<sub>2</sub>O]<sup>-</sup>]), resulting in enhancement of crystallization of this material. After aging for 24 h, the Ni<sup>2+</sup>-substituted Green rust(Cl<sup>-</sup>) formed at Ni/Fe = 0 – 0.08 was mainly transformed into spherical Fe<sub>3</sub>O<sub>4</sub> particles. The crystallization and particle growth of Fe<sub>3</sub>O<sub>4</sub> were promoted on elevating Ni/Fe ratio. At Ni/Fe ≥ 0.12, Fe<sub>3</sub>O<sub>4</sub> formation was suddenly impeded to generate rod-shaped α-FeOOH particles, of which the material possesses more stable crystal structure than Fe<sub>3</sub>O<sub>4</sub>. These results suggest that alloying Ni in Ni-advanced weathering steels accelerates the formation of stable rust layer composed of Fe<sub>3</sub>O<sub>4</sub> and/or α-FeOOH particles by atmospheric corrosion in salinity environment such as coastal and marine zones to contribute to the formation of the protective rust particle layer.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104605"},"PeriodicalIF":4.2,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuanning Jiang , Dazhao Gou , Chao Li , Ge Yu , Xizhong An , Junfei Liu , Yifu Long
{"title":"Wear evolution of the mantle liner and its effect on the crushing characteristics of a lab-scale cone crusher: A numerical study","authors":"Chuanning Jiang , Dazhao Gou , Chao Li , Ge Yu , Xizhong An , Junfei Liu , Yifu Long","doi":"10.1016/j.apt.2024.104614","DOIUrl":"10.1016/j.apt.2024.104614","url":null,"abstract":"<div><p>Understanding the evolution of wear caused by the relative motion between the mantle liner and the concave liner in a cone crusher provides useful insights into the wear and crushing mechanism, which helps industries optimize operating parameters to reduce production costs. This work analyzed wear formation and evolution on the mantle liner using the discrete element method (DEM) with Archard models, in which the effects of operating parameters on wear depth and crushing performance under different wear conditions were investigated. Meanwhile, the response surface method (RSM) was employed to minimize the wear of the mantle liner and improve the crushing characteristics of the cone crusher. Results show that the evolution trend of the wear depth accords with the compressive force, and the extension of the wear area is consistent with the rotating direction of the mantle liner. Changes in the crushing chamber volume caused by operating parameters (except for the eccentric speed) and in the crushing chamber volume ratio caused by different <em>meta</em>-particle sizes can significantly cause different wear depths. And with the increase of the wear depth, the throughput, crushing rate, and power draw all decrease. Additionally, the presence of small-hard <em>meta</em>-particles leads to more severe wear.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104614"},"PeriodicalIF":4.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of coating layer homogeneity of cathode particles on lithium ion battery performance","authors":"Tomoya Ohno, Jeevan Kumar Padarti, Shigeto Hirai, Takeshi Matsuda","doi":"10.1016/j.apt.2024.104608","DOIUrl":"10.1016/j.apt.2024.104608","url":null,"abstract":"<div><p>Ensuring the stability of cathodes under high voltage (>4.3 V vs. Li/Li + ) necessitates particle-scale surface protection. Research varies on the optimal structure, and systematic studies on the impact of nanoscale coating coverage on cathode particle surfaces and stability are lacking. This study presents a quantitative analysis of coating homogeneity dependency on cathode particles and their stability under high voltage conditions. A metal alkoxide precursor-based coating methodology was used, manipulating the coating structure by understanding the pH dependence of the zeta potential for core particles and altering the precursor evaporation rate. Ta-substituted Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> was chosen as the coating material on Li(Ni<sub>1/3</sub>,Co<sub>1/3</sub>,Mn<sub>1/3</sub>)O<sub>2</sub> cathode particles, varying the coating structure while maintaining the same coating concentration. Coating structure was verified using X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Results showed that cathode particles with more homogeneous coatings exhibited significantly improved cycle stability and lower charge transfer resistance at potentials above 3.9 V. Optimizing coating homogeneity can significantly enhance battery performance, offering insights for more efficient lithium-ion batteries.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104608"},"PeriodicalIF":4.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092188312400284X/pdfft?md5=bb4a69ae9e8b1e6e345539168199dd7b&pid=1-s2.0-S092188312400284X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia Xu , Haoran Chen , Jiayi He , Min Nie , Hai Guo , Xin Liu
{"title":"Interfacial structure design of FeSiB-based amorphous soft magnetic composites for excellent thermal stability and electromagnetic performance","authors":"Jia Xu , Haoran Chen , Jiayi He , Min Nie , Hai Guo , Xin Liu","doi":"10.1016/j.apt.2024.104620","DOIUrl":"10.1016/j.apt.2024.104620","url":null,"abstract":"<div><p>Narrow process window of stress relieving annealing limits the development of amorphous soft magnetic composites (SMCs) with excellent combined electromagnetic performance. In addition, flaky amorphous powder is difficult to be uniformly coated by insulation layer due to the edge effect. To address these issues, the FeSiBCCr fine amorphous powder is introduced into the SMC based on flaky FeSiB amorphous powder. On the one hand, the 12 wt% addition of FeSiBCCr powder improves the thermal stability and enhances the annealing temperature by ∼ 20 ℃, broadening the annealing window of SMCs. On the other hand, the fine spherical FeSiBCCr amorphous powder can improve the electrical resistivity of SMC and act as a filler for large-size flaky FeSiB amorphous powder. The improved annealing temperature and the microstructure modification are beneficial to improving the combined electromagnetic properties of amorphous SMCs, including permeability, direct current bias performance and core loss. As a result, the FeSiB SMCs with 12 wt% FeSiBCCr addition possess the high effective permeability <em>μ</em><sub>e</sub> of 46.5 at 100 kHz, high percent effective permeability %<em>μ</em><sub>e</sub> of 74.5 % at 100 kHz and 100 Oe, and low total core loss of 222 kW/m<sup>3</sup> at 100 kHz and 50 mT. This work proposes a potential strategy for the industry to fabricate the SMCs with high combined electromagnetic performance.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104620"},"PeriodicalIF":4.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compaction and re-crushing characteristics of sandstone granules with different gradations under cyclic loading","authors":"Tengfei Ma, Quanle Zou, Qican Ran, Fanjie Kong","doi":"10.1016/j.apt.2024.104611","DOIUrl":"10.1016/j.apt.2024.104611","url":null,"abstract":"<div><p>Under the influence of multiple mining of coal seams, the granules structure formed by the mixing of different grain sizes exists in the collapse zone, and its compaction and re-crushing characteristics become a factor influencing the deformation and movement of the overlying rock layer. Therefore, the characteristics of sandstone granules with different gradations under cyclic loading were investigated in this manuscript. It is shown that the strain of sandstone granules increases with the increase of gradation index <em>n</em>, the dissipation energy of particle movement and crushing shows an increasing trend, and its porosity decreases with the increase of axial stress as a whole. At the early stage of stress loading, the high-gradation sandstone granules have high compression space and crushing potential due to larger size particles, the porosity declines the fastest, the compression modulus increases sharply, and the sandstone granules is compacted rapidly at this stage. When the stress exceeds a certain range, the energy density changes and the porosity reduction of the higher-gradation granules increases, and the larger size particles in the higher-gradations granules samples are broken down into small-size particles. At the same time, the amount of energy density changes and porosity attenuation of the high-gradations sandstone granules increases, the compressive modulus increases again at this stage, the position of the granules particles moves and the distribution is re-distributed, and the granules particles are more compact after the re-distribution, which corresponds to the higher re-distribution of the high-gradations granules samples. Under the external disturbance load, the sandstone granules show the characteristics of “three stages”: pore compression period, elastic deformation period, and crushing and reorganization period. The results of this study can provide theoretical support for revealing the deformation and movement mechanism of the rock mass in the collapse zone under multiple mining.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104611"},"PeriodicalIF":4.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiqiang Yang , Xin Wang , Fangjie Wang , Qichao Wu , Min Xiao , Kexin Zhao , Jin Zhang , Baoyin Zhao
{"title":"Tribocatalytic activity of poled BaCuxTi1-xO3-x nanofibers for degradation of organic dye","authors":"Zhiqiang Yang , Xin Wang , Fangjie Wang , Qichao Wu , Min Xiao , Kexin Zhao , Jin Zhang , Baoyin Zhao","doi":"10.1016/j.apt.2024.104612","DOIUrl":"10.1016/j.apt.2024.104612","url":null,"abstract":"<div><p>BaCu<sub>x</sub>Ti<sub>1-x</sub>O<sub>3-x</sub> (x = 0, 0.01, 0.02, 0.03, 0.04) nanofibers were synthesized via the hydrothermal method and subsequently subjected to poling. The impact of composition on their tribocatalytic performance and the underlying catalytic mechanism were investigated. After 100 min, all poled BaCu<sub>x</sub>Ti<sub>1-x</sub>O<sub>3-x</sub> nanofibers exhibited superior tribocatalytic efficiency compared to pure BaTiO<sub>3</sub>, with BaCu<sub>0.02</sub>Ti<sub>0.98</sub>O<sub>2.98</sub> poled nanofibers achieving a degradation rate of up to 80 % for RhB solution. This is because the increased conductivity and reduced carrier recombination rate which were caused by a 0.02 Cu doping, smaller grain size and poling effect. Control experiments confirmed that both stirring and the presence of a catalyst are essential prerequisites for tribocatalysis. Furthermore, the universality, selectivity, stability, and main active group <sup><img></sup>O<sub>2</sub><sup>–</sup> of poled BaCu<sub>x</sub>Ti<sub>1-x</sub>O<sub>3-x</sub> (x = 0, 0.01, 0.02, 0.03, 0.04) nanofibers were verified. Lastly, although the tribocatalytic efficiency presented in this paper does not match that of piezoelectric catalysis, the latter requires ultrasonic conditions that are challenging to find naturally. As a result, tribocatalysis offers greater potential for practical applications.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104612"},"PeriodicalIF":4.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The distribution of Y2O3 during selective laser melting of IN625/Y2O3 core-shell powders","authors":"Lilin Wang, Minghong Li, Xin Lin, Tianhong Gui, Haozhi Chai, Weidong Huang","doi":"10.1016/j.apt.2024.104609","DOIUrl":"10.1016/j.apt.2024.104609","url":null,"abstract":"<div><p>Selective laser melting (SLM) of metal-oxide hybrid powder is currently a cost-effective approach for fabricating oxide-dispersion-strengthened alloys. The distribution behavior of oxide during the SLM process has significant effects on the performance of the final components. In this work, Y<sub>2</sub>O<sub>3</sub> strengthened IN625 superalloys were fabricated by selective laser melting using IN625 powder coated by 1 wt% and 3 wt% Y<sub>2</sub>O<sub>3</sub>. The hybrid powder prepared by the resonant mixing method present the good flowability. Due to the high melting point of Y<sub>2</sub>O<sub>3</sub> powder and its harmful effect on the wettability between the melt track and the formed surface, the required laser energy density for successful SLM-fabrication of the hybrid powder should be high. The distribution characteristics of Y<sub>2</sub>O<sub>3</sub> during the SLM process and the corresponding evolution mechanism were analyzed. It was found that severe loss of Y<sub>2</sub>O<sub>3</sub> occurred during SLM process, resulting from Y<sub>2</sub>O<sub>3</sub> slag on the top surface of the built specimen, Y<sub>2</sub>O<sub>3</sub> adhered to spatter particles falling into the recycling powder, and Y<sub>2</sub>O<sub>3</sub> plume blown into the machine filter by the gas flow. The more Y<sub>2</sub>O<sub>3</sub> coated on the metal powder, the more Y<sub>2</sub>O<sub>3</sub> lost during SLM. The molten pool with keyhole mode is favorable to reduce Y<sub>2</sub>O<sub>3</sub> loss compared to the conduction mode.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104609"},"PeriodicalIF":4.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}