Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )最新文献

筛选
英文 中文
Change-Point Detection Method for Clinical Decision Support System Rule Monitoring. 临床决策支持系统规则监测的变点检测方法。
Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- ) Pub Date : 2017-06-01 Epub Date: 2017-05-30 DOI: 10.1007/978-3-319-59758-4_14
Siqi Liu, Adam Wright, Milos Hauskrecht
{"title":"Change-Point Detection Method for Clinical Decision Support System Rule Monitoring.","authors":"Siqi Liu,&nbsp;Adam Wright,&nbsp;Milos Hauskrecht","doi":"10.1007/978-3-319-59758-4_14","DOIUrl":"https://doi.org/10.1007/978-3-319-59758-4_14","url":null,"abstract":"<p><p>A clinical decision support system (CDSS) and its components can malfunction due to various reasons. Monitoring the system and detecting its malfunctions can help one to avoid any potential mistakes and associated costs. In this paper, we investigate the problem of detecting changes in the CDSS operation, in particular its monitoring and alerting subsystem, by monitoring its rule firing counts. The detection should be performed online, that is whenever a new datum arrives, we want to have a score indicating how likely there is a change in the system. We develop a new method based on Seasonal-Trend decomposition and likelihood ratio statistics to detect the changes. Experiments on real and simulated data show that our method has a lower delay in detection compared with existing change-point detection methods.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"10259 ","pages":"126-135"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-59758-4_14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35255379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Identifying Parkinson's Patients: A Functional Gradient Boosting Approach. 识别帕金森患者:一种功能梯度增强方法。
Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- ) Pub Date : 2017-06-01 Epub Date: 2017-05-30 DOI: 10.1007/978-3-319-59758-4_39
Devendra Singh Dhami, Ameet Soni, David Page, Sriraam Natarajan
{"title":"Identifying Parkinson's Patients: A Functional Gradient Boosting Approach.","authors":"Devendra Singh Dhami,&nbsp;Ameet Soni,&nbsp;David Page,&nbsp;Sriraam Natarajan","doi":"10.1007/978-3-319-59758-4_39","DOIUrl":"https://doi.org/10.1007/978-3-319-59758-4_39","url":null,"abstract":"<p><p>Parkinson's, a progressive neural disorder, is difficult to identify due to the hidden nature of the symptoms associated. We present a machine learning approach that uses a definite set of features obtained from the Parkinsons Progression Markers Initiative(PPMI) study as input and classifies them into one of two classes: PD(Parkinson's disease) and HC(Healthy Control). As far as we know this is the first work in applying machine learning algorithms for classifying patients with Parkinson's disease with the involvement of domain expert during the feature selection process. We evaluate our approach on 1194 patients acquired from Parkinsons Progression Markers Initiative and show that it achieves a state-of-the-art performance with minimal feature engineering.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"10259 ","pages":"332-337"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-59758-4_39","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35551182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Extracting Adverse Drug Events from Text using Human Advice. 利用人类建议从文本中提取药物不良事件。
Phillip Odom, Vishal Bangera, Tushar Khot, David Page, Sriraam Natarajan
{"title":"Extracting Adverse Drug Events from Text using Human Advice.","authors":"Phillip Odom,&nbsp;Vishal Bangera,&nbsp;Tushar Khot,&nbsp;David Page,&nbsp;Sriraam Natarajan","doi":"10.1007/978-3-319-19551-3_26","DOIUrl":"https://doi.org/10.1007/978-3-319-19551-3_26","url":null,"abstract":"<p><p>Adverse drug events (ADEs) are a major concern and point of emphasis for the medical profession, government, and society in general. When methods extract ADEs from observational data, there is a necessity to evaluate these methods. More precisely, it is important to know what is already known in the literature. Consequently, we employ a novel relation extraction technique based on a recently developed probabilistic logic learning algorithm that exploits human advice. We demonstrate on a standard adverse drug events data base that the proposed approach can successfully extract existing adverse drug events from limited amount of training data and compares favorably with state-of-the-art probabilistic logic learning methods.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"2015 ","pages":"195-204"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-19551-3_26","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35594880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信