Phillip Odom, Vishal Bangera, Tushar Khot, David Page, Sriraam Natarajan
{"title":"Extracting Adverse Drug Events from Text using Human Advice.","authors":"Phillip Odom, Vishal Bangera, Tushar Khot, David Page, Sriraam Natarajan","doi":"10.1007/978-3-319-19551-3_26","DOIUrl":null,"url":null,"abstract":"<p><p>Adverse drug events (ADEs) are a major concern and point of emphasis for the medical profession, government, and society in general. When methods extract ADEs from observational data, there is a necessity to evaluate these methods. More precisely, it is important to know what is already known in the literature. Consequently, we employ a novel relation extraction technique based on a recently developed probabilistic logic learning algorithm that exploits human advice. We demonstrate on a standard adverse drug events data base that the proposed approach can successfully extract existing adverse drug events from limited amount of training data and compares favorably with state-of-the-art probabilistic logic learning methods.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"2015 ","pages":"195-204"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-19551-3_26","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-19551-3_26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Adverse drug events (ADEs) are a major concern and point of emphasis for the medical profession, government, and society in general. When methods extract ADEs from observational data, there is a necessity to evaluate these methods. More precisely, it is important to know what is already known in the literature. Consequently, we employ a novel relation extraction technique based on a recently developed probabilistic logic learning algorithm that exploits human advice. We demonstrate on a standard adverse drug events data base that the proposed approach can successfully extract existing adverse drug events from limited amount of training data and compares favorably with state-of-the-art probabilistic logic learning methods.