Phillip Odom, Vishal Bangera, Tushar Khot, David Page, Sriraam Natarajan
{"title":"利用人类建议从文本中提取药物不良事件。","authors":"Phillip Odom, Vishal Bangera, Tushar Khot, David Page, Sriraam Natarajan","doi":"10.1007/978-3-319-19551-3_26","DOIUrl":null,"url":null,"abstract":"<p><p>Adverse drug events (ADEs) are a major concern and point of emphasis for the medical profession, government, and society in general. When methods extract ADEs from observational data, there is a necessity to evaluate these methods. More precisely, it is important to know what is already known in the literature. Consequently, we employ a novel relation extraction technique based on a recently developed probabilistic logic learning algorithm that exploits human advice. We demonstrate on a standard adverse drug events data base that the proposed approach can successfully extract existing adverse drug events from limited amount of training data and compares favorably with state-of-the-art probabilistic logic learning methods.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"2015 ","pages":"195-204"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-19551-3_26","citationCount":"19","resultStr":"{\"title\":\"Extracting Adverse Drug Events from Text using Human Advice.\",\"authors\":\"Phillip Odom, Vishal Bangera, Tushar Khot, David Page, Sriraam Natarajan\",\"doi\":\"10.1007/978-3-319-19551-3_26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adverse drug events (ADEs) are a major concern and point of emphasis for the medical profession, government, and society in general. When methods extract ADEs from observational data, there is a necessity to evaluate these methods. More precisely, it is important to know what is already known in the literature. Consequently, we employ a novel relation extraction technique based on a recently developed probabilistic logic learning algorithm that exploits human advice. We demonstrate on a standard adverse drug events data base that the proposed approach can successfully extract existing adverse drug events from limited amount of training data and compares favorably with state-of-the-art probabilistic logic learning methods.</p>\",\"PeriodicalId\":72303,\"journal\":{\"name\":\"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )\",\"volume\":\"2015 \",\"pages\":\"195-204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-19551-3_26\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-19551-3_26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-19551-3_26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracting Adverse Drug Events from Text using Human Advice.
Adverse drug events (ADEs) are a major concern and point of emphasis for the medical profession, government, and society in general. When methods extract ADEs from observational data, there is a necessity to evaluate these methods. More precisely, it is important to know what is already known in the literature. Consequently, we employ a novel relation extraction technique based on a recently developed probabilistic logic learning algorithm that exploits human advice. We demonstrate on a standard adverse drug events data base that the proposed approach can successfully extract existing adverse drug events from limited amount of training data and compares favorably with state-of-the-art probabilistic logic learning methods.